i n t e 1 i √ √ . ★ . G r i d

IST 004664

Interoperability of Virtual Organizations on Complex Semantic Grid

Data management and the InteliGrid user scenarios

M. Dolenc¹, Ž. Turk¹, E. Balaton² and K. Kurowski³

¹ University of Ljubljana, Ljubljana, Slovenia

² EPM Technology AS, Oslo, Norway

ESO N

³ Poznan Supercomputing and Networking Center, Poznan, Poland

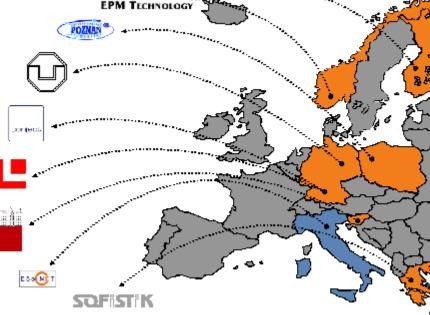
SOF ST K Hellas

CIINOLOGY

Content

- InteliGrid project overview
 User scenarios

 Generic engineering process
 Example user scenario


 Data management

 Requirements
 - Extensions to OGSA-DAI

InteliGrid project overview

- Sept 2004 Feb 2007 (30 months)
 - Effort 360 person months
 - Partners 9 / 6 countries: research, infrastructure, ASP, industry, users
 - InteliGrid vision: Grid as a semantic collaboration platform
 - Semantic: grid committed to an ontology combining IT and professional concepts
 - Collaboration: secure, shared access to grid resources for members of the highly dynamic VO
 - Platform: shared toolkit code
 - on servers and clients for grid access; committed to the ontology

Cracow Grid Workshop 2004, 20-23 November 2005, Cracow, Poland

InteliGrid difference

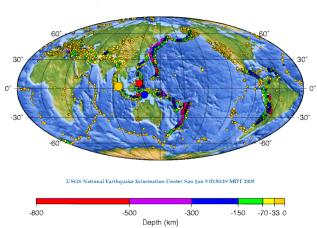
- Not dealing specifically with high performance computing
 - Industrial orientation
 - 4 industrial partners, 1 industrial association
 - technology push / pull
 - several industrial domains
- Complex products
 - series of one or few
 - described not in documents but in highly structured databases
- Production process
 - unique, on of a kind
- Virtual organizations
 - highly dynamic (SMEs)
 - specific end user requirements

User scenarios

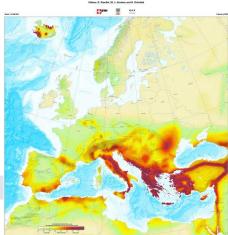
- Several engineering domainsGeneric engineering process
- Basic steps:
 - find object to work on (with the aid of semantics)
 - match object to tool (with the aid of semantics)
 - work on the object with the tool
 - store work results (semantically annotated)

Cracow Grid Workshop 2004, 20-23 November 2005, Cracow, Poland

www.InteliGrid.com


The story:

(1)Engineer doing a design in a earthquake area.


- (2) Finding the relevant proposed structural designs that are then transformed into calculation models.
- (3) Evaluate and select an optimal design of a building.
- (4) Evaluation through non-linear static and dynamic structural analysis.
- (5) Results are semantically annotated and stored on a grid.
- (6) Parametric analysis to determine actual performance and safety level.
 - (a) Determining hazard functions.
 - (b) Selecting representative earthquake accelerograms.
 - (c) Running a parametric analysis on a high-throughput grid resource
- (7) Workflow semantically annotated and stored for future re-evaluation

Earthquakes in 2005, Located by the NEIC

EUROPEAN-MEDITERRANEAN SEISMIC HAZARD MAP

Cracow Grid Workshop 2004, 20-23 November 2005, Cracow, Poland

The story:

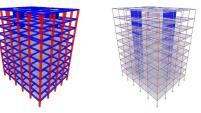
(1) Engineer doing a design in a earthquake area.

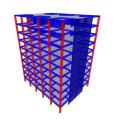
(2)Finding the relevant proposed structural designs and transform them into calculation models.

- (3) Evaluate and select an optimal design of a building.
- (4) Evaluation through non-linear static and dynamic structural analysis.
- (5) Results are semantically annotated and stored on a grid.
- (6) Parametric analysis to determine actual performance and safety level.
 - (a) Determining hazard functions.
 - (b) Selecting representative earthquake accelerograms.
 - (c) Running a parametric analysis on a high-throughput grid resource
- (7) Workflow semantically annotated and stored for future re-evaluation

Open				<u>? ×</u>	
Look in:	🛅 Desktop	- 🕲 - 🔰	🔽 🕼 - 🔰 🔍 🗙 🞽 🎫 - Too		
* 6.8.8	Name 🔺	Size Type	Date Modified		
2.5	🔊 Network Connections	1 KB Shortcut	17.02.05 18:32		
InteliGrid	Sony-Ericsson T68i Blu	1 KB Internet Sho	22.05.05 20:27		
favorites					
My Documents					
Desktop					
1	File <u>n</u> ame:		<u> </u>	<u>O</u> pen 💌	
Mv Computer	Files of type: All Word Docu	ments (*.doc; *.dot; *.htm; *	*.html; *.url; * 💌	Cancel	

Cracow Grid Workshop 2004, 20-23 November 2005, Cracow, Poland

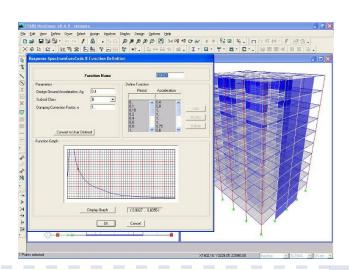



The story:

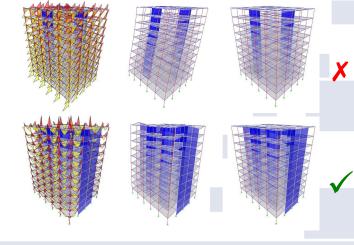
- (1) Engineer doing a design in a earthquake area.
- (2) Finding the relevant proposed structural designs that are then transformed into calculation models.

(3)Evaluate and select an optimal design of a building.

- (4) Evaluation through non-linear static and dynamic structural analysis.
- (5) Results are semantically annotated and stored on a grid.
- (6) Parametric analysis to determine actual performance and safety level.
 - (a) Determining hazard functions.
 - (b) Selecting representative earthquake accelerograms.
 - (c) Running a parametric analysis on a high-throughput grid resource
- (7) Workflow semantically annotated and stored for future re-evaluation


www.InteliGrid.com

The story:


- (1) Engineer doing a design in a earthquake area.
- (2) Finding the relevant proposed structural designs that are then transformed into calculation models.
- (3) Evaluate and select an optimal design of a building.

(4)Evaluation through non-linear static and dynamic structural analysis.

- (5) Results are semantically annotated and stored on a grid.
- (6) Parametric analysis to determine actual performance and safety level.
 - (a) Determining hazard functions.
 - (b) Selecting representative earthquake accelerograms.
 - (c) Running a parametric analysis on a high-throughput grid resource
- (7) Workflow semantically annotated and stored for future re-evaluation

www.InteliGrid.com

The story:

- (1) Engineer doing a design in a earthquake area.
- (2) Finding the relevant proposed structural designs that are then transformed into calculation models.
- (3) Evaluate and select an optimal design of a building.
- (4) Evaluation through non-linear static and dynamic structural analysis.

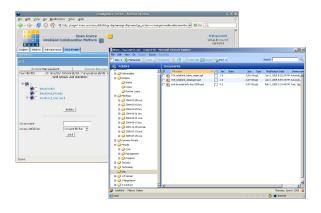
(5)Results are semantically annotated and stored on a grid.

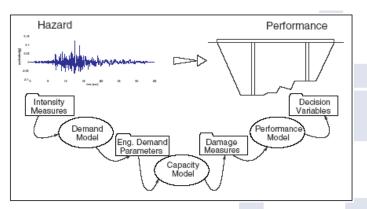
(6) Parametric analysis to determine actual performance and safety level.

- (a) Determining hazard functions.
- (b) Selecting representative earthquake accelerograms.
- (c) Running a parametric analysis on a high-throughput grid resource
- (7) Workflow semantically annotated and stored for future re-evaluation

Open Look in:	Desktop	💽 🎯 - 🚺 🍳 🗙 📷 Size Type Date Modifie	d	AddOn	Documents and Settings) 1386	My Brains	Drogram Files	TMP	WINDOWS	<u>H</u> elp
	Sony-Ericsson T68i Blu	1 KB Shortcut 17.02.05 18 1 KB Internet Sho 22.05.05 20		Amcap532	Install.LOG	Lang.txt	NOTIFY.WAV		en aEdit-32		
favorites								Se <u>n</u> Cu <u>t</u> <u>C</u> op		 Bluetooth Compressed (zip Desktop (create 	
My Documents								<u>D</u> ele Ren	ame	InteliGrid Mail Recipient My Documents	
Desktop	File name: Files of type: All Word Docur	ments (*.doc; *.dot; *.htm; *.html; *.url;	Open Cancel	*				Prop	perties	Regasus Mail Skype DVD-RW Drive (I	E:)

Cracow Grid Workshop 2004, 20-23 November 2005, Cracow, Poland


www.InteliGrid.com


The story:

- (1) Engineer doing a design in a earthquake area.
- (2) Finding the relevant proposed structural designs that are then transformed into calculation models.
- (3) Evaluate and select an optimal design of a building.
- (4) Evaluation through non-linear static and dynamic structural analysis.
- (5) Results are semantically annotated and stored on a grid.

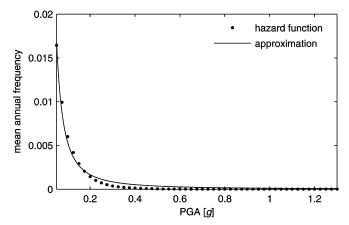
(6)Parametric analysis to determine actual performance and safety level.

- (a) Determining hazard functions.
- (b) Selecting representative earthquake accelerograms.
- (c) Running a parametric analysis on a high-throughput grid resource
- (7) Workflow semantically annotated and stored for future re-evaluation

The analysis is performed according to PEER (http://peer.berkeley.edu/) performance-based engineering framework.

Cracow Grid Workshop 2004, 20-23 November 2005, Cracow, Poland

www.InteliGrid.com


The story:

- (1) Engineer doing a design in a earthquake area.
- (2) Finding the relevant proposed structural designs that are then transformed into calculation models.
- (3) Evaluate and select an optimal design of a building.
- (4) Evaluation through non-linear static and dynamic structural analysis.
- (5) Results are semantically annotated and stored on a grid.

(6)Parametric analysis to determine actual performance and safety level.

(a)Determining hazard functions.

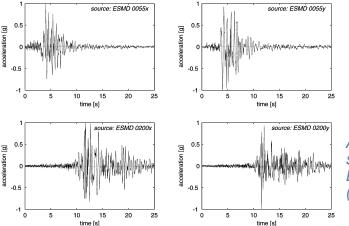
- (b) Selecting representative earthquake accelerograms.
- (c) Running a parametric analysis on a high-throughput grid resource
- (7) Workflow semantically annotated and stored for future re-evaluation

A hazard function for the region is determined according to different parameters, for example intensity and frequency of earthquakes in the region.

Cracow Grid Workshop 2004, 20-23 November 2005, Cracow, Poland

www.InteliGrid.com

The story:


- (1) Engineer doing a design in a earthquake area.
- (2) Finding the relevant proposed structural designs that are then transformed into calculation models.
- (3) Evaluate and select an optimal design of a building.
- (4) Evaluation through non-linear static and dynamic structural analysis.
- (5) Results are semantically annotated and stored on a grid.

(6)Parametric analysis to determine actual performance and safety level.

(a) Determining hazard functions.

(b)Selecting representative earthquake accelerograms.

- (c) Running a parametric analysis on a high-throughput grid resource
- (7) Workflow semantically annotated and stored for future re-evaluation

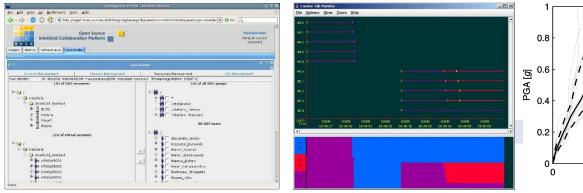
A number of representative accelerograms are selected from the European Strong-Motion Database (ESMD) access on the Web (http://www.isesd.cv.ic.ac.uk/).

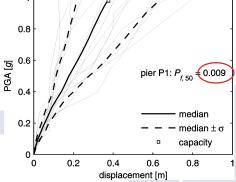
Cracow Grid Workshop 2004, 20-23 November 2005, Cracow, Poland

www.InteliGrid.com

The story:

- (1) Engineer doing a design in a earthquake area.
- (2) Finding the relevant proposed structural designs that are then transformed into calculation models.
- (3) Evaluate and select an optimal design of a building.
- (4) Evaluation through non-linear static and dynamic structural analysis.
- (5) Results are semantically annotated and stored on a grid.


(6)Parametric analysis to determine actual performance and safety level.


(a) Determining hazard functions.

(b) Selecting representative earthquake accelerograms.

(c)Running a parametric analysis on a high-throughput grid resource

(7) Workflow semantically annotated and stored for future re-evaluation

Cracow Grid Workshop 2004, 20-23 November 2005, Cracow, Poland

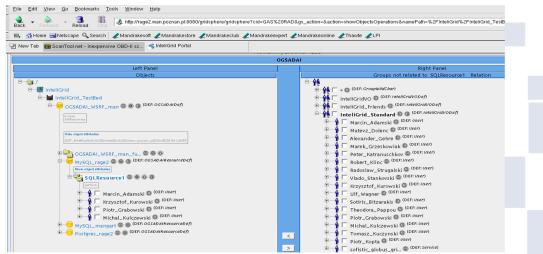
www.InteliGrid.com

The story:

- (1) Engineer doing a design in a earthquake area.
- (2) Finding the relevant proposed structural designs that are then transformed into calculation models.
- (3) Evaluate and select an optimal design of a building.
- (4) Evaluation through non-linear static and dynamic structural analysis.
- (5) Results are semantically annotated and stored on a grid.
- (6) Parametric analysis to determine actual performance and safety level.
 - (a) Determining hazard functions.
 - (b) Selecting representative earthquake accelerograms.
 - (c) running a parametric analysis on a high-throughput grid resource

(7)Workflow semantically annotated and stored for future re-evaluation

www.InteliGrid.com


Data management requirements

- 1.Security2.Heterogeneous data sources3.Availability, virtualization, data location
- independence
- 4.Personalised
- 5.End-user way of working must/should not change

Security

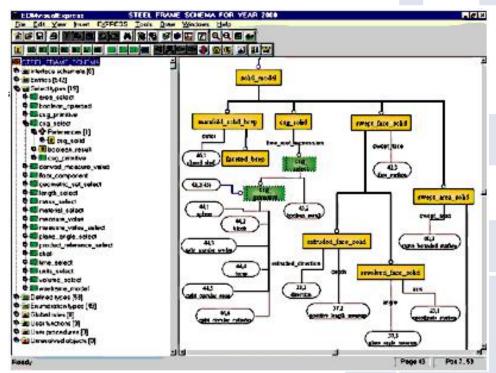
- OGSADAI WSRF is secured by Grid Authorization Service (GAS, GridLab)
- Operations:
 - whether user is allowed to access OGSADAI WSRF service
 - whether user is allowed to list OGSADAI WSRF resources
 - whether user is allowed to perform some action on OGSADAI WSRF resource

Cracow Grid Workshop 2004, 20-23 November 2005, Cracow, Poland

Heterogeneous data sources

- Data sources
 - databases: RDBMS, PMS (OODBMS), XML
 - file systems: local, remote (WebDAV)
 - Internet: http/https, FTP, GridFTP, ...
- OGSA-DAI
 - Enable access to diverse data sources
 - Low level data access technology
 - Extended to support WebDAV and PMS
 - Additional delivery activities

OGSA-DAI / WebDAV

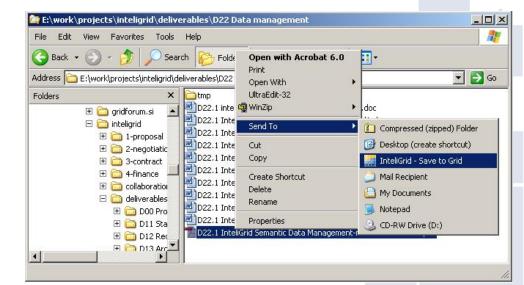

- WebDAV data source
 - similar to file activities in OGSA-DAI
 - integration with OGSA-DAI deployment mech.
- WebDAV delivery activities
 - deliverToWebDAV, deliverFromWebDAV
 - security consideration

```
<deliverToWebDAV name="putWebDAVFile">
  <fromLocal from="dataSink"/>
  <toWebDAV
    host="http://localhost:8090/slide/"
    file="/slide/files/test.txt"
    username="root"
    password="root" />
  </deliverToWebDAV>
```


OGSA-DAI / PMS

- OGSA-DAI integration with product model servers
 - non-standard SDAI implementations
 - make it first work for EDM
 - business objects
- to be available January 2006

Cracow Grid Workshop 2004, 20-23 November 2005, Cracow, Poland



End-user way of working

- should not changed
- support of Windows platform
- grid enable Windows applications (save, load)

Open					<u>?</u> ×	
Look <u>i</u> n:	🛅 Desktop		- 🕲 - 🔰	💐 🗙 📴 🎫 Toc	oįs ▼	
1 2 2 2	Name 🔺	Size	Туре	Date Modified		
1.5	Setwork Connections	1 KB	Shortcut	17.02.05 18:32		
InteliGrid	Sony-Ericsson T68i Blu	1 KB	Internet Sho	22.05.05 20:27		
favorites						
My Documents						
Desktop						
	File name:			•	Open 💌	
Mv Computer	V Computer Files of type: All Word Documents (*.doc; *.dot; *.htm; *.html; *.url; * 💌 Cancel					

Cracow Grid Workshop 2004, 20-23 November 2005, Cracow, Poland

Conclusions

End user / industry driven work

- Not a typical grid project
- Almost no HPC involved
- Data management
 - OGSA-DAI middleware
 - OGSA-DAI extensions
- Ontology services
 - support virtualization, data location independence
 - Personalization

www.InteliGrid.com

IST 004664

 \star

G

r

i d

Interoperability of Virtual Organizations on Complex Semantic Grid

The end

