### Simulation Method for Estimation of Security Overhead of Grid Applications

Wojciech Rząsa<sup>1</sup>, Marian Bubak<sup>2,3</sup> Bartosz Baliś<sup>2,3</sup>, Tomasz Szepieniec<sup>2</sup>

<sup>1)</sup>Rzeszow University of Technology <sup>2)</sup>Academic Computer Centre – CYFRONET <sup>3)</sup>Institute of Computer Science, AGH







# Outline

- Introduction
  - Secure communication in the Grid
  - Security overhead
- Simulation method
  - Model parameters
  - Simulation results
  - Results accuracy
  - Petri Nets enabling model execution
- Related work
- Future work
- Summary





## **Secure communication**

- **GSI** [Foster, Kesselman, Tsudik, Tuecke 1998]
  - Solution based on existing standards (eg. TLS, X.509)
  - Introduces communication layer



- Leads to additional consumption of resources
  - CPU
  - RAM
  - Network bandwidth







# Security overhead

[Baliś, Bubak, Rząsa, Szepieniec 2004]

- Secured connection enables
   Data transmission
  - Authentication
  - Data integrity
  - Confidentiality
- Connection establishment

| Connections | Requested in 1 second | Established in 1 second | Failed |
|-------------|-----------------------|-------------------------|--------|
| Secured     | 896                   | 30                      | 4      |
| Clear       | 1692                  | 1691                    | 0      |



Institute of

AGH

omputer Science

4



Rzeszów University of Technology, Computer and Control Engineering Chair



# Simulate the application

- Enable application modeling to verify
  - Behavior in time
  - Resource consumption
  - depending on communication overhead
- Useful while
  - Application development
  - Legacy software adaptation







# Model components

### **Model of resources**

- Parameters of resources
  - Nodes
    - Performance of CPUs
    - RAM
  - Network links
    - Bandwidth
- Topology of resources

### Model of application

- Processes/components allocated on the nodes
- Network connections between application processes
  - Security level for individual network connections
- Consumption of resources by application logic
  - Communication dependent
  - Communication independent
- Should not include algorithms





# **Results of simulation**

- Whole application statistics concerning
  - Resources usage
  - Execution time
  - Data transmission
- Accuracy of results
  - Lack of detailed information about application logic
  - Accuracy results from **proper model of communication and interactions** being part of simulation method







# Modeling and simulation concept

- *High level application model* provided by the user
- Enable simulation by converting the *High level model* into an **executable formalism**, that is
  - flexible enough to let us model required entities and activities
  - capable of providing required statistics
  - precise enough to provide accurate results







# **Coloured Petri Nets (CPN) with time**

- Formal model
- Capable of modeling
  - Concurrency
  - Synchronization
  - Mutual exclusion
  - Conflict
  - Time
- Moreover
  - CPN are hierarchical
  - CPN allows both: interactive and non-interactive simulation







## Petri net

#### [Murata 1989]

• Defined as five-tuple

 $PN = (P, T, F, W, M_0)$ 

#### Where

- P finite set of places
- T finite set of trasitions
- $F \subseteq (P \times T) \cup (T \times P)$  set of arcs
- W: F  $\rightarrow$  {1,2,3,...} weight function
- $M_0: P \rightarrow \{0, 1, 2, ...\}$  initial marking

 $P \cap T = \phi$  and  $P \cup T \neq \phi$ 











## Petri net

#### [Murata 1989]

• Defined as five-tuple

 $PN = (P, T, F, W, M_0)$ 

#### Where

- P finite set of places
- T finite set of trasitions
- $F \subseteq (P \times T) \cup (T \times P)$  set of arcs
- W: F  $\rightarrow$  {1,2,3,...} weight function
- $M_0: P \rightarrow \{0, 1, 2, ...\}$  initial marking

 $P \cap T = \phi$  and  $P \cup T \neq \phi$ 





- Places
- Arcs
- Transitions
- Tokens reside in places
- Tokens enable transitions
- Enabled transitions can fire



Institute of

AGH

ter Science

11

## Petri net

#### [Murata 1989]

• Defined as five-tuple

 $PN = (P, T, F, W, M_0)$ 

#### Where

- P finite set of places
- T finite set of trasitions
- $F \subseteq (P \times T) \cup (T \times P)$  set of arcs
- W: F  $\rightarrow$  {1,2,3,...} weight function
- $M_0: P \rightarrow \{0, 1, 2, ...\}$  initial marking

 $P \cap T = \phi$  and  $P \cup T \neq \phi$ 

- Graph consists of
  Places
  - Arcs
  - Transitions
- Tokens reside in places
- Tokens enable transitions
- Enabled transitions can fire







### **PN Examples - resources**









### **PN Examples - resources**









### **PN Examples - resources**

























## PN Examples - data transmission











#### Network connection model

Rzeszów University of Technology, Computer and Control Engineering Chair





## **PN Examples - hierarchy**



#### Network connection model



Rzeszów University of Technology, Computer and Control Engineering Chair





Secured connection model

## **Coloured** Petri Net

[Jensen 1994]

- Classical PN extended by
  - Colour sets data types
  - Colours of tokens values
  - Guards defined for transitions
  - Arc expressions
- More compact and transparent model







## **Coloured Petri Net - example** More compact and transparent graph **Petri Net**



Rzeszów University of Technology, Computer and Control Engineering Chair







## **CPN – Guards and Inscriptions**



Rzeszów University of Technology, Computer and Control Engineering Chair





## **CPN** with time

[Jensen 1995/96]

- Tokens with timestamps
- Timestamps affects availability of tokens











## **Related work (examples)**

### • Focus on wide application area

- Simulink (Matlab)
- CSIM
- C++SIM, JavaSIM
- Network protocols simulators
  - cnet
  - ns2

[Schwetman 2001] [Little, McCue 1994]

[Buyya 2002]

[Fahringer]

http://www.csse.uwa.edu.au/cnet/ http://www.isi.edu/nsnam/ns/

- Distributed systems and Grid simulators
  - GridSim based on SimJava
  - Prophet
    - UML model transformed to CSIM







## **Future work**

- Distributed application and infrastructure model (CPN with time)
  - nearly finished
- *High level application model* description (XML?)
  - guidelines formulated
- High level model to CPN model transformation
- Case study
  - Model calibration
  - Verification of simulation results







## Summary

• The goal is to

### Enable simulation of distributed applications in order to estimate security overhead

#### using

limited information about the application logic and precise model of communication and interactions

- To facilitate
  - distributed applications development
  - adaptation of legacy software
- Method should provide possibly detailed statistics about
  - resource consumption
  - execution and communication time



