Interoperability of Virtual Organizations on Complex Semantic Grid

InteliGrid project: lessons learned and future work

M. Dolenc, Ž. Turk, K. Kurowski and P. Katranuschkov
matevz.dolenc@fgg.uni-lj.si
InteliGrid overview
 - vision and context
 - architecture
 - results

Lessons learned and future work
 - grid technology
 - semantic technologies
 - technology adoption: push vs. pull
 - business models

Conclusions
Construction process is fragmented

Operation 70%

Design 6%

Construction 20%

Disposal 4%

Source:
Relative influence level of a decision

Source:
PM4D Final Report, CIFE Technical Report Number 143,
Martin Fischer and Calvin Kam, October 2002
Islands of automation

Buildig Information Model (BIM)

- Addresses the following core assumptions about the building process:
 - Design evolves from the “fuzzy” to the specific.
 - Design is an iterative process.
 - Multiple design variations are created in the early phases of a project.
 - Architects do not want limitations either in the form or the size of the design.
 - Architects would like to spend more time designing and less time documenting.
 - Communication is an essential component of the design process.

- Is supported by many software vendors
 - Interoperability issues
SMART integration...

2D Plan Transformation into IFC via Converter

3D model-based CAD + Facility Management

Electrical engineering

Ventilation design

Collision checking

Heating design

InteliGrid project: lessons learned and future work
... enables SMART actions ...
... and different use cases.
InteliGrid context

- European large scale engineering industries
- huge number of experts
- a wide range of software and hardware resources
- dynamic virtual organization
- secure information sharing

Engineering domains

- construction
- automotive
- shipbuilding
- ...

InteliGrid is providing information infrastructure
InteliGrid technologies

Virtual organization
- Dynamic collaboration
- Worldwide marketplace
- The source network
- Fast changing requirements

Semantic interoperability
- Common conceptualization
- Computers understanding
- Meaningful objects
- IT and AEC ontologies

Grid technology
- Resource sharing
- High performance comp.
- Pervasive computing
- Distributed computing
Generic end-user scenario

- users have prescribed roles
- role based authentication
- simple but maintain high level of security

- end-users leave VO
- unshared resources are removed from VO

- new actions or processes can be triggered based on new information

- new information needs to be shared with other actors in VO
- local data annotated and shared with VO

- fine grained role-based access policy for all VO resources
- use semantic query to find objects

- tools usually known in advance
- VO defined explicit and implicit rules what tools can be used

- offline end user applications are often used
- data needs to be available locally
Semantic grid architecture
InteliGrid results

- Semantic grid architecture
- Ontology framework

Diagram:

- Semantic grid architecture
- Ontology framework

```
Product/Process Model
  \- Business Process Ontology
    \- Organisational Ontology
      \- Service Ontology
        \- Resource Ontology
          \- Semantic Specs
            \- Organisational Ontology
              \- User/Role Authorisations
                \- Service Ontology
                  \- Services
                    \- System Resources
                      \- WSRF Services
                        \- Distributed run-time environment
                          \- Ontology-Based Virtual User Desktop
                            \- run on
                              \- grid
```

semantic grid architecture
ontology framework
InteliGrid results

- Semantic grid architecture
- Ontology framework

Service
- OGSA-DAI extensions: WebDAV, PMD, security
- Open DRMAA Service Provider
- Ontology services: gridspace, VO, services, resources, business process objects
InteliGrid results

- Semantic grid architecture
- Ontology framework
- Service
 - OGSA-DAI extensions: WebDAV, PMD, security
 - Open DRMAA Service Provider
 - Ontology services: gridspace, VO, services, resources, business process objects
- Clients
 - Ontology management
InteliGrid results

- Semantic grid architecture
- Ontology framework
- Service
 - OGSA-DAI extensions: WebDAV, PMD, security
 - Open DRMAA Service Provider
 - Ontology services: gridspace, VO, services, resources, business process objects
- Clients
 - Ontology management
 - Document management
- Semantic grid architecture
- Ontology framework
- Service
 - OGSA-DAI extensions: WebDAV, PMD, security
 - Open DRMAA Service Provider
 - Ontology services: gridspace, VO, services, resources, business process objects
- Clients
 - Ontology management
 - Document management
- VO Collaboration platform
InteliGrid project: lessons learned and future work

InteliGrid results

- Semantic grid architecture
- Ontology framework
- Service
 - OGSA-DAI extensions: WebDAV, PMD, security
 - Open DRMAA Service Provider
 - Ontology services: gridspace, VO, services, resources, business process objects
- Clients
 - Ontology management
 - Document management
 - VO Collaboration platform

- Grid enabled applications
 - EDMmodelServer™
InteliGrid results

- Semantic grid architecture
- Ontology framework
- Service
 - OGSA-DAI extensions: WebDAV, PMD, security
 - Open DRMAA Service Provider
 - Ontology services: gridspace, VO, services, resources, business process objects
- Clients
 - Ontology management
 - Document management
 - VO Collaboration platform
- Grid enabled applications
 - EDMmodelServer™
 - SOFISTIK
InteliGrid results

- Semantic grid architecture
- Ontology framework
- Service
 - OGSA-DAI extensions: WebDAV, PMD, security
 - Open DRMAA Service Provider
 - Ontology services: gridspace, VO, services, resources, business process objects
- Clients
 - Ontology management
 - Document management
 - VO Collaboration platform
- Grid enabled applications
 - EDMmodelServer™
 - SOFISTIK

more at www.InteliGrid.com
Lessons learned

- Technology
 - Combining multiple cutting edge technologies
 - Stability / standardisation
 - Service-oriented architecture
 - Ontologies
 - Interoperability on data level
Lessons learned

- **Technology**
 -Combining multiple cutting edge technologies
 -Stability / standardisation
 -Service-oriented architecture
 -Ontologies
 -Interoperability on data level

- **Generation of knowledge**
 -Multiple technology domains
 -End-users involved in technology/system development
 -End-user understanding and acceptance
Lessons learned

Technology
- Combining multiple cutting edge technologies
- Stability / standardisation
- Service-oriented architecture
- Ontologies
- Interoperability on data level

Generation of knowledge
- Multiple technology domains
- End-users involved in technology/system development
- End-user understanding and acceptance

Realization lessons, exploitation, end-user acceptance
- Collaboration infrastructures
- Plug-and-play environment
- Registration of resources
- Pushing technology
Lessons learned

- Technology
 - Combining multiple cutting edge technologies
 - Stability / standardisation
 - Service-oriented architecture
 - Ontologies
 - Interoperability on data level

- Generation of knowledge
 - Multiple technology domains
 - End-users involved in technology/system development
 - End-user understanding and acceptance

- Realization lessons, exploitation, end-user acceptance
 - Collaboration infrastructures
 - Plug-and-play environment
 - Registration of resources
 - Pushing technology

more at www.InteliGrid.com
Requirements: “5S Grid”

- **security**
 - industry eager to move to a ground-up secure environment

- **simplicity**
 - must work seamlessly with current client applications and operating systems

- **stability & standards**
 - a need for stable long-term specifications

- **scalable service orientation**
 - well accepted and known

- **semantics**
 - must support rich, domain specific semantics
Problems: “5S Grid”

- **security**
 - dynamic security polices, legal issues

- **simplicity**
 - SME companies, many without IT departments, push vs. pull

- **stability & standards**
 - WS vs. Grid services, interoperability

- **scalable service orientation**
 - see above

- **semantics**
 - standardisation of domain specific ontologies, taxonomies, classifications, ...
Problems: “5S Grid”

- security
 - dynamic security polices, legal issues

- simplicity
 - SME companies, many without IT departments, push vs. pull

- stability & standards
 - WS vs. Grid services, interoperability

- scalable service orientation
 - see above

- semantics
 - standardisation of domain specific ontologies, taxonomies, classifications, ...