A Novel Environment for Simulation of Quantum Computing

Joanna Patrzyk (1), Bartłomiej Patrzyk (1), Katarzyna Ryczek (1,2), Marian Bubak (1,2,3)

(1) AGH University of Science and Technology, Institute of Computer Science AGH, Department of Computer Science, al. Mickiewicza 30, 30-059 Kraków, Poland
(2) ACC Cyfronet AGH, Nawojki 11, 30-950 Kraków, Poland
(3) University of Amsterdam, Institute for Informatics, Faculty of Science, Science Park 904, 1098XH Amsterdam, The Netherlands

QuIDE – Quantum IDE

- Building and analysing quantum circuits and algorithms via source code and graphically
- Step-by-step execution with the step back option
- Preview of the actual internal quantum state

QuIDE Performance

Performance Results - The Memory Usage

<table>
<thead>
<tr>
<th>Number of Qubits</th>
<th>QuIDE</th>
<th>jQuantum</th>
<th>QuIDE.dll</th>
<th>libquantum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>5</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>10</td>
<td>10.2</td>
<td>10.2</td>
<td>10.2</td>
<td>10.2</td>
</tr>
<tr>
<td>15</td>
<td>15.3</td>
<td>15.3</td>
<td>15.3</td>
<td>15.3</td>
</tr>
<tr>
<td>20</td>
<td>20.4</td>
<td>20.4</td>
<td>20.4</td>
<td>20.4</td>
</tr>
<tr>
<td>25</td>
<td>25.5</td>
<td>25.5</td>
<td>25.5</td>
<td>25.5</td>
</tr>
<tr>
<td>30</td>
<td>30.6</td>
<td>30.6</td>
<td>30.6</td>
<td>30.6</td>
</tr>
</tbody>
</table>

QuIDE Usability Evaluation

- QuIDE was used during the Quantum Computation classes at DCS AGH
- The students assessed the usability with the System Usability Scale
- QuIDE was compared to libquantum

Official project website: http://www.quide.eu/

QuIDE User Interface

- Users can generate the quantum circuit from the source code (1) as well as the source code from the circuit (4)
- The quantum circuit can be executed in the console (2) or evaluated step-by-step in the Run-Time Preview (3)
- The quantum gates in the circuit can be grouped into composite gates (6), which can be then ungrouped (5)
- A big set of predefined composite gates is available (7)

Simulation of Shor’s Algorithm

Shor’s Algorithm enables to factor numbers on quantum computer in polynomial time – it could thus compromise the RSA cryptosystem. Two optimization variants of the algorithm were implemented and compared.

Implemented optimization variants:

1. **1st Variant (7L + 3 qubits)**
2. **2nd Variant (2L + 3 qubits)**

L – number of bits of factored number

Official project website: http://www.quide.eu/