
The Performance of the Czech National Grid Infrastructure after Major Reconfiguration of Job Scheduling System

Dalibor Klusáček Šimon Tóth

Faculty of Informatics, Masaryk University

October 27, 2014

The Czech National Grid

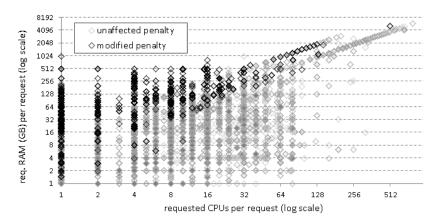
The Czech National Grid

- 10 000 CPU cores
- 12GB..6TB RAM per-node
- 1PB permanent storage
- 27PB long-term storage

Motivation

- workloads evolve throughout time
- small changes no longer sufficient
- three major shifts:
 - 1 memory heavy workloads
 - 2 increased average job length
 - 3 increasingly frequent wide jobs

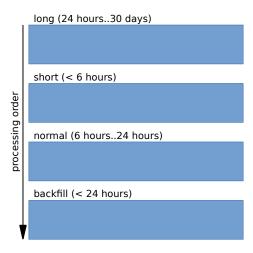
Original Configuration


- designed by experts to fit original workload
- full support for very long jobs (up to 30 days)
- fair allocation of resources across users (long-term)
- fair wait times across users

Memory heavy workloads

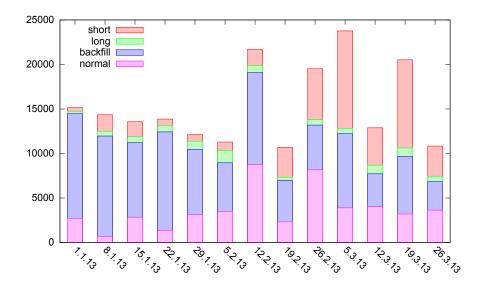
- fairshare fairness model
 - only CPU accounted
- users with CPU heavy workloads penalized
- exploited by some of our users

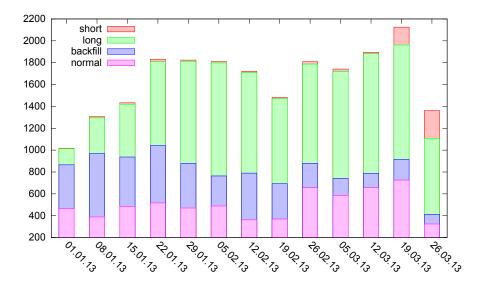
Multi-resource fairness model


- based on dominant resource model
- 40% of users penalized

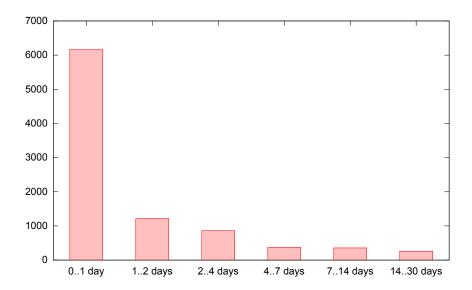
Increase in average job length

- originally unclear issue
- users experienced long wait times
- system experienced low utilization


Original Configuration


Original Configuration

long (24 hours..30 days) 60% resources, 70 running jobs per-user short (< 6 hours) processing order 95% resources, 250 running jobs per-user normal (6 hours..24 hours) 100% resources, 300 running jobs per-user backfill (< 24 hours) 80% resources, single-node 1000 running jobs per-user


Analysis - job arrivals by queue

Analysis - CPU time by queue

Analysis - job runtime in long queue

Goals for new configuration

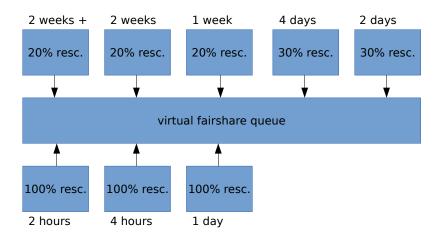
- increase resource pool for mid-range jobs (2-4 days)
- decrease resource pool for very long jobs (1 week +)

Simulation

Alea Simulator

http://www.fi.muni.cz/~xklusac/alea/

- complex job specification
- multi-queue configurations including operational limits
- high-resolution output
- historical 5-month workloads
 - 376 722 jobs
 - 302 users

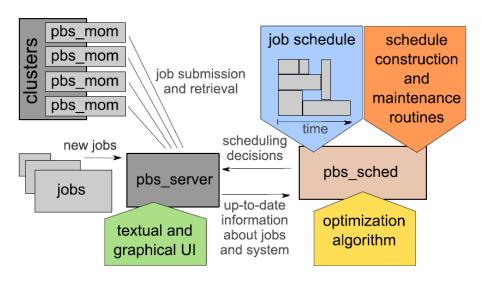

Simulation results

- 26.5% users with improved average wait time
- 19.2% users with deteriorated average wait time
- average improvement of wait time by 6.7 hours
- average deterioration of wait time by 55.7 hours

Analysis

- impact of fairness policy heavily mitigated
 - fairshare ordering policy overridden by hard priorities
- impact of anti-starvation policy amplified
 - reservations blocking most resources

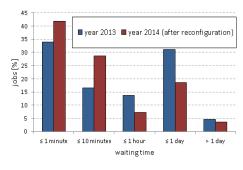
Experimental configuration

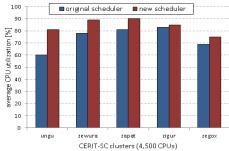

Simulation results

- 31.1% users with improved average wait time
- 13.9% users with deteriorated average wait time
- average improvement of wait time by 7.2 hours
- average deterioration of wait time by 2.1 hours

Increasingly frequent wide jobs

- parallel jobs are problematic in general
- freeing up resources can cause gaps in utilization
- problems with runtime estimates

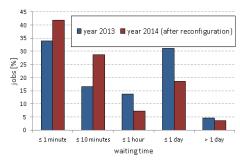

Planning & optimizing scheduler

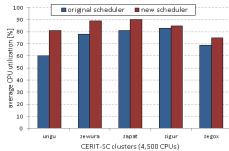


Planning & optimizing scheduler

- queue-less scheduler
- maintains a stable schedule
- schedule continuously optimized and adjusted
 - new jobs arrival
 - premature job completion
- currently managing 45% of grid resources

Results




Conclusion

- targeting fairness improved overall system performance
- user satisfaction improved as well
- required relaxation of some policies (e.g. anti-starvation)
- precise simulation tools are critical

Summary

- multi-resource fairness
- new queue configuration
- optimizing scheduler

