Search for Time Reversal Symmetry Violation in the decay of free neutron Measurement of transverse electron polarization

G.Ban^{d)}, A.Białek^{a)}, K.Bodek^{b)}, P.Gorel^{a)}, K.Kirch^{c)}, St.Kistryn^{b)}, <u>A.Kozela^{a)}, M.Kuzniak^{b)}, O.Naviliat-Cuncic^{d)}, J.Pulut^{b)}, N.Severijns^{e)}, E.Stephan^{f)}, J.Zejma^{b)}</u>

- a) Institute of Nuclear Physics, PAN, Cracow, Poland
- b) Institute of Physics, Jagellonian University, Cracow, Poland
- c) Paul Scherrer Institute, Villigen, Switzerland
- d) Laboratoire de Physique Corpusculaire, Caen, France
- e) Catholic University, Leuven, Belgium
- f) Institute of Physics, University of Silesia, Katowice, Poland

Violation of T and CP symmetries, observations

- Baryon asymmetry of the present Universe:
 - Sakharov: necessary condition: CP-violation, equivalent to T-violation.
- Decay of neutral K mesons, numerous observations of large CP-violation in B mesons decays.

Consistent with Kobayashi-Maskawa CP-violation mechanism

Too weak to account for Baryon asymmetry ...

CP- (or T) violation in "normal" matter greatly wellcome

Angular correlations in *β*-decay:

$$W((\theta, E), \sigma_{P}) \approx 1 \times +1 A + \frac{\vec{J} \cdot \vec{p} \cdot \vec{p}}{E} + N \vec{J} \cdot \hat{\sigma} + R \frac{\vec{J} \cdot \vec{p} \times \hat{\sigma}}{E} + \cdots$$

$$A \text{- asymmetry parameter (-0.1173)}$$

$$A \text{- asymmetry parameter (-0.1173)}$$

Cold neutron beam, SINQ, PSI

- □ Total flux: 1.4x 10¹⁰ s⁻¹
- □ Maximum polarization: 0.97
- Average polarization: ~0.80±0.008
- Average velocity: 900 m/s

Within 1 sec. Per 1 meter:

3x10⁴ neutron decays

5x10⁷ losses ...

Experimental setup, top view

Multiwire proportional chambers

50x50 cm²

(5+5) x 2

96

- Active area:
- Measuring planes:
- Sense wires per plane:
- Special features;
 - Gas mixture:

90%He 5%Isobuthan 5%Methylal

- o Wires: **Φ 25** μm, Ni/Cr (20/80),
- Readout of anodes (y) and cathodes (z),
- o Window foil: 2.5 μm Mylar

Results

Correlation coefficients N, R (×1000)

final		59±11±4	56±11±5	8±15±5
2007	68	54±12±5	51±12±6	12±16±6
2006	68	79±32±7	86±30±8	-11±42±9
2004	68	144±92±15	70±86±17	-117±140±26
2003	71	110±108±30	82±97±30	-89±143±40
run	N _{SM}	N _{sr}	Ν	R

(R_{SM}=0.6)

Correlation coefficients N, R and scalar and tensor coupling constants of weak interaction

$$N \approx 0.276 \cdot Re(S) + 0.335 \cdot Re(T) - A \cdot \frac{m}{E}$$
$$R \approx 0.276 \cdot Im(S) + 0.335 \cdot Im(T) - A \cdot \frac{\alpha m}{p}$$

Outlook

- Word first measurement of correlation coefficients R and N in neutron decay is finished. Preliminary result R=(8±15±5)*10⁻³, N= (56±11±5)*10⁻³ is consistent with Standard Model.
- Gain in accuracy (~20%) in the determination of R is still possible
- \Box Another method of R coefficient extraction is tested.

Adam Kozela

Analiza danych - wyliczenie R i N $\mathcal{A}(\alpha) - PA\tilde{\beta}(\alpha)\tilde{\mathcal{F}}(\alpha) = P \tilde{S}(\alpha) \left[N \tilde{\mathcal{G}}(\alpha) + R\tilde{\beta}(\alpha)\tilde{\mathcal{H}}(\alpha)\right]$

Adam Kozela

Asymmetry parameter

□ Identification of electrons from n-decay

 $A = -0.1167 \pm 0.0060$ (stat.) $\langle P_n \rangle = 0.899 \pm 0.008$ $A = -0.1173 \pm 0.0013$ (PDG, 2003)

Vertex reconstruction

Układ eksperymentalny, widok z góry

