

CFD Modelling of Fibre Suspension Flow in a Rotating Machinery with Complex Geometry

G. Kondora, D. Asendrych

KU KDM '09, 12-13.03.2009

1. Introduction

2. Numerical model

- 2.1 Geometry
- 2.2 Boundary conditions
- 2.3 Model assumptions
- 2.4 Computational mesh

3. <u>Results</u>

3.1	Refiner flow pattern
3.2	Direction of rotation influence
3.3	Material properties influence

4. Parallel computing

5. <u>Summary</u>

1 Introduction

The papermaking process may be divided into several sections:

stock preparation

- slushing and deflaking
- screening
- cleaning
- <u>refining</u>

approach flow

- dose and mix
- supply continuous suspension flow

• paper machine

- headbox
- wire section
- dryer section
- press section

- ...

1 Introduction

What is refining?

Refining is a part of **stock preparation** process and its main objective is to "design" the fibres to match the desired requirements.

> fibres structure changes permanently, they may be shortened, split lengthwise, collapsed or fibrillated

mechanical treatment of fibres with metallic bars with presence of water

2.1 Geometry

real refiner

computer model

<u>Geometry – assumptions</u>

- neglected axial part of inlet, radial inlet applied
- axisymmetric outlet (instead of point outlet)
- periodicity of disks geometry allows to consider only one segment (30 degrees of angular extent)
- stator and rotor are identical

Boundary conditions of the flow model

- mass flow rate through machine 1000 l/min
- rotational speed 1000 rpm
- gap clearance 100 µm

2.3 Model assumptions

- flow character assumed to be laminar (according to relevant literature);
- pulp suspenions treated as a single-phase continuum;
- pulp concerned as <u>Newtonian</u> and <u>non-Newtonian</u> fluid
- fiber-fiber and fiber-wall interactions are neglected, main goal was to analyse flow field pattern

[1] Radoslavova D., Silvy J., Roux J.C.: "The concept of apparent viscosity of pulp for beating analysis and the development of the paper properties"
 [2] Ventura C., Garcia F., Ferreira P.J., Rasteiro M.G.: "Dynamic Factor - A parameter to characterize pulp rheology"

2.4 Computational mesh

- mesh type: hexahedral, multi-block structure
- mesh size: <u>6 million of cells</u>
- geometry and mesh were generated in automated way with the use of specially developed code in <u>GAMBIT 2.4.6</u> (useful for parametric study)
- simulations were performed with the use of <u>FLUENT 6.3.26</u>, post-processing done in <u>Tecplot 360 2008</u>
- extremely long computational time (several weeks)
- huge computer resources needed (parellel computing with multiprocessor machines own resources and The Academic Computer Centre CYFRONET AGH resources)

3 Performed simulations

direction of rotation

• filling angle influence

- gap clearance influence (100 μm, 200 μm, 400 μm)
- material properties

3.1 Refiner flow pattern

static pressure dirtibution [bar] at cross section through stator and rotor

$$a_{fill} = 30$$

 $gap = 100 \ \mu m$
sucking direction
Newtonian fluid,
 $\mu = const$

static pressure dirtibution [bar] at the centre of the stator bars

pressure varies linearly with radial distance

pressure pulses inside the gap region

3.1 Refiner flow pattern

vortex flow inside the grooves

3.1 Refiner flow pattern

streamtracers for a frozen time

backflows:

- streams coming from the outlet to the inlet inside the stator grooves
- contribute to the internal circulation increasing probability of fiber/bar impact (refining effect)

3.2 Direction of rotation influence

3.3 Filling angle influence

static pressure distribution at the centre of the gap

3.5 Material properties influence

- <u>lower viscosity intensification of</u> <u>the backflows in the stator</u>
- <u>introduction of rheology increases</u> <u>the relevance of the model (but it is</u> <u>not crucial)</u>

4 Parallel computing

2

1,8

1.6

e 1,4 1,2 0,8 0,6

case 1 - Cartesian Z, AZ - off, EGI - off

computational time referenced by serial 0,4 0,2 0 serial case 1 case 2 case 3 case 4 case 5 mode "mars" paralell performance 06:00:00 50 time steps 05:00:00 04:00:00 calculate - mars series 03:00:00 📥 mars series 3 - mars_average 2 needed 02:00:00 time 01:00:00 00:00:00

2

number of processors

- parition method has a great influence on the computational time - test has to be made before main simulations
- use of cluster machines clearly decrease computational time

0

Adequate numerical model:

pulp can be treated as a single phase continuum
 laminar flow character has been confirmed

Features of the flow field pattern:

- mass transfer through the filling is mainly done by the rotor
- existence of the backflows in the stator
- mass flow rate distributions stongly non-uniform and rotor position dependent
- parametric study showed strong influence of key geometrical parameters as well as material pulp properties on the flow pattern and intensity of internal recirculation

<u>All the conclusion are limited to the model used in the present study</u> (neglected housing, single-phase character of the medium ,...)

The authors would like to acknowledge the **<u>Academic Computer</u>** <u>**Centre CYFRONET AGH**</u> for providing an access to its powerful resources.

Voith Paper Germany is acknowledged for the financial support during the project.

Thank you for your attention

Additional

Reynolds number distributions

<u>Re number is low enough to justify the laminar flow</u> <u>character assumption</u>

3 Gap clearance influence

static pressure variation at the point loacted in the stator bar along with the phase shift

power variation along with the phase shift

- increase of gap size leads to the damping of the pressure peaks
- over 2 times smaller power consuption for gap equal to 400 μm than for 100 μm