On the Importance of Memory-driven Load Balancing in Large Scale Quantum Chemical Computations

Grzegorz Mazur, Marcin Makowski and Mateusz Brela

Faculty of Chemistry, Jagiellonian University

KU KDM 2009 Zakopane

G. Mazur, M. Makowski and M. Brela (UJ)

Memory-driven Load Balancing

KU KDM 2009 Zakopane 1 / 26

Introduction

- Chemists want more and more accurate information about bigger and bigger molecules
- Theoreticians keep providing better and better models
- Computers are getting faster and faster

Seems good. But is it really that simple?

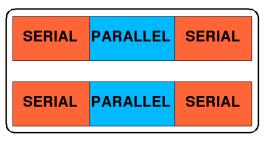
A B M A B M

What's the problem?

- Typical computer architecture is highly parallel (supercomputers, clusters)
- Algorithmic changes are required to efficiently use available resources
- The presentation is about some of the issues we solved parallelizing our code

A B A A B A

Parallelization made simple


Parallelization made simple

Parallelization made simple

G. Mazur, M. Makowski and M. Brela (UJ)

What do we want to partition?

- Computational quantum chemistry is just a glorified name for simple tensor algebra
- The problems to be partitioned are (various types of) tensor contractions
- Among the most important are various transformations of the two-electron integrals

 $(\mu\nu|\kappa\lambda)$

• The sheer size of the two-electron integrals tensor prevents standard algebraic treatment

ヘロト ヘヨト ヘヨト

Archetypical two-electron integral transformations I

• Double contraction (HF)

$$\mathcal{G}_{\mu
u} = \sum_{\kappa\lambda} \mathcal{P}_{\kappa\lambda} \left[2(\mu
u|\kappa\lambda) - (\mu\lambda|\kappa
u)
ight]$$

- time complexity: naive approach gives $\mathcal{O}(N^4)$, quite easy to reduce to $\mathcal{O}(N^2)$, better scaling possible with some effort
- space complexity: $\mathcal{O}(N^2)$
- CPU bound
- partitioning granularity: high

ヘロト 不通 ト イヨト イヨト

Archetypical two-electron integral transformations II

• Four-index transformation (MP2)

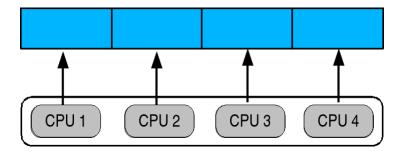
$$(ia|jb) = \sum_{\mu\nu\lambda\sigma} C_{\mu i} C_{\nu a} C_{\kappa j} C_{\lambda b} (\mu\nu|\kappa\lambda)$$

- time complexity: naive approach gives $\mathcal{O}(N^8)$, quite easy to reduce to $\mathcal{O}(N^5)$, better scaling possible with some effort
- space complexity: $\mathcal{O}(N^4)$, better scaling possible with some effort
- memory bound
- partitioning granularity: low

・ロット 御り とうりょうり 一日

Benchmark

• To asses how well a program is parallelized, we run it several times using varying number of nodes and fit

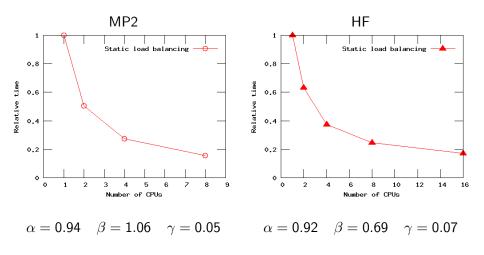

$$T_n = \frac{\alpha}{n^\beta} + \gamma$$

where n is the number of nodes.

• perfect parallelization is achieved if $\beta = 1$ and $\gamma = 0$ (direct consequence of Amdahl Law)

イロト 不得 トイヨト イヨト 二日

Static load-balancing


G. Mazur, M. Makowski and M. Brela (UJ)

Memory-driven Load Balancing

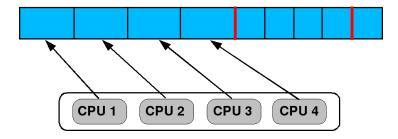
(3) KU KDM 2009 Zakopane

11 / 26

Static load-balancing results

KU KDM 2009 Zakopane

12 / 26

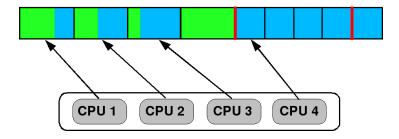

-

Issues with static load-balancing

- In theory, static load-balancing should be the ideal solution
- In practice, calculations on different nodes run at different pace
- The issue is inherent to large part of quantum-chemical calculations
- As a result, we have problems with synchronization

A B A A B A

Dynamic load-balancing

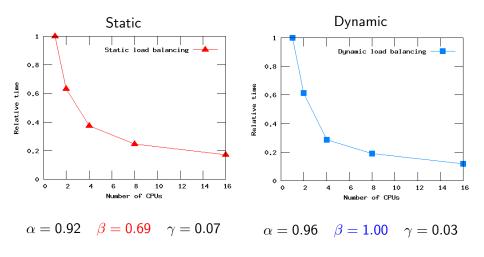

G. Mazur, M. Makowski and M. Brela (UJ)

Memory-driven Load Balancing

(3) KU KDM 2009 Zakopane

14 / 26

Dynamic load-balancing


G. Mazur, M. Makowski and M. Brela (UJ)

Memory-driven Load Balancing

(3) KU KDM 2009 Zakopane

15 / 26

HF Dynamic load-balancing results

G. Mazur, M. Makowski and M. Brela (UJ)

KU KDM 2009 Zakopane

(3)

16 / 26

Leave well alone?

- We are as fast as Amdahl allows, but can we do better?
- Yes, we can try to break the Amdahl limit with hyper-cache
- Hyper-what???

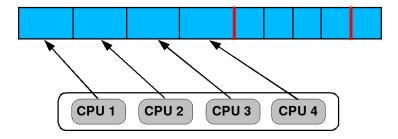
3

A B A A B A

< □ > < 同 >

Hyper-cache effect

- In the SCF process the same values are recalculated several times
- Having more nodes we have more memory to keep the data, avoiding recalculations
- In principle this allows for breaking the Amdahl limit
- Breaking the Amdahl limit this way is called the hyper-cache effect


・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

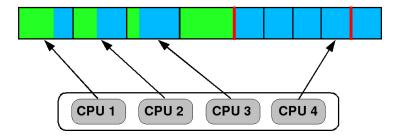
Cache-aware dynamic partitioning

- Static load-balancing maximizes cache utilization, but is very inefficient because of poor synchronization
- Dynamic load-balancing results in very good synchronization, but causes very poor cache utilization
- Is it possible to both eat cake and have it?

A B A A B A

Cache-aware dynamic partitioning

G. Mazur, M. Makowski and M. Brela (UJ)

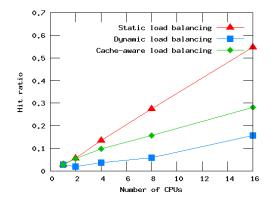

Memory-driven Load Balancing

KU KDM 2009 Zakopane

(B)

20 / 26

Cache-aware dynamic partitioning

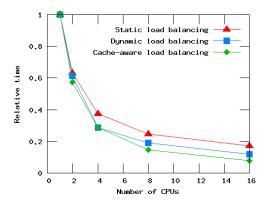

G. Mazur, M. Makowski and M. Brela (UJ)

Memory-driven Load Balancing

(B) KU KDM 2009 Zakopane

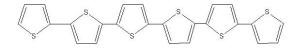
21 / 26

HF Cache hit ratio

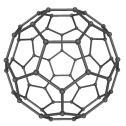

G. Mazur, M. Makowski and M. Brela (UJ)

Memory-driven Load Balancing

KU KDM 2009 Zakopane


22 / 26

HF Results



Algorithm	α	eta	γ
Static	0.92	0.69	0.07
Dynamic	0.96	1.00	0.03
Cache-aware	1.00	1.07	0.02

Does it really matter?

sexithiophene: 7 min (HF/6-31G**, no symmetry)

fullerene: 1 hour (HF/6-31G, no symmetry)

A B A A B A

4 A I

24 / 26

Conclusions

- There is no silver bullet
 - the choice of the load-balancing algorithm depends on the job at hand
- Static load-balancing
 - fits the bill for MP2
 - performs badly for HF
- For HF calculations
 - the dynamic algorithm hits the speed limit imposed by Amdahl law
 - the cache-aware algorithm fully retains adaptivity of the dynamic one, but allows for better cache utilization
 - this results in super-linear scaling of the calculations with the number of computational nodes (hyper-cache effect)

25 / 26

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Practical recommendations

- Running quantum-chemical calculations in parallel makes sense
- Owing to the number crunching/communication ratio in typical quantum-chemical calculations **clusters are the sweet spot**
- When we play the space-time tradeoff well, large per-node **memory improves performance**

G. Mazur, M. Makowski and M. Brela (UJ)

ヘロト 人間ト ヘヨト ヘヨト