

Special Purpose Parallel Supercomputer Based on the Dynamic Lattice Liquid Model

<u>Jarosław Jung</u>⁽¹⁾, PhD Piotr Polanowski⁽¹⁾, PhD Rafał Kiełbik⁽²⁾, PhD

 (1) Department of Molecular Physics, Technical University of Łódź
(2) Department of Microelectronics and Computer Science, Technical University of Łódź

Movement of discs on the plane, without the friction

 $\sum E_i = const$ $\sum \vec{p_i} = const$ i

Computer Simulation B. J. Alder i T. E. Wainwright, 1959

Studies in Molecular Dynamics B. J. Alder, T. E. Wainwright J. Chem. Phys. 31, 459, (1959).

Single molecule trajectory

Cooperative movement

2

One simulation is a three steps' cycle

Randomising attempt of movements (oscillation)

Step two

Cooperative movements

2

The deplacement of the coopertive loop's elements by one net position in the randomized direction (translation)

Software (sequential) implementation of DLL algorithm is

TIME CONSUMING !!!

Supercomputers

Roadrunner (Los Alamos) 122 400 cores 1026 TFLOPS

Galera (Gdańsk) 5 376 cores 50 TFLOPS

7 000 000 PLN 7 tons

16th in Europe 45th in the World

Due to **MANY INTERCONNECTIONS** general purpose clusters do not solve the problem...

Supercomputer DLL J. Jung i P. Polanowski, 2002

3

µSuperkomputer DLL:

- Net size: 6x6x6 (**216 cells**)
- 8 FPGA devices (XC3S4000)

µSupercomputer DLL

µSupercomputer DLL

μSupercomputer DLL Verification 1:1 10 000 000 cycles

Software implementation of DLL algorithm. Standard **rand()** function replaced with dedicated **pseudorandom generator**.

μSupercomputer DLL with the same **pseudorandom generator**.

Clock freq.: 3.4 GHz Calc. time: **101 s** 136:1-40% Clock freq.: 25 MHz Calc. time: **65 s**

µSupercomputer DLL

Near future

2009-2012 – Grant sponsored by Polish Government

Elementary module of final Supercomputer

Main issues:

- Architecture, interface and mechanical structure
- Efficient data exchange protocols
- Power supply, configuration and synchronization
- Defect detection and elimination

Thank you