Exploiting sparsity in large scale quantum chemical computations - implementation of LT-AO-MP2 formalism

M. Makowski, G. Mazur, K. Kowalczyk, J. Sumera

Faculty of Chemistry, Jagiellonian University

KU KDM 2009 Zakopane

4 1 1 1 4 1 1 1

1 / 25

http://www.chemia.uj.edu.pl/~niedoida Exploiting sparsity in MP2 calculations KU KDM 2009 Zakopane

Introduction

- Chemists, physicists, molecular biologists want to get accurate description of bigger and bigger molecular systems
- Theoreticians keep providing better and better models

this is not enough to get results for real-world systems

what we really need are computational methods which scale well with the size of the system

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Introduction

- Chemists, physicists, molecular biologists want to get accurate description of bigger and bigger molecular systems
- Theoreticians keep providing better and better models

this is not enough to get results for real-world systems

what we really need are computational methods which scale well with the size of the system

・ロット 御り とうりょうりょう

2 / 25

Problem solved?

Even at the Hartree-Fock level of theory there were a few bottlenecks

- evaluation of two-electron integrals $(\mathcal{O}(N^2))$
- diagonalization $(\mathcal{O}(N^3))$

The cost can be reduced to linear employing

- fast multipole method
- efficient sorting and prescreening techniques
- direct optimization instead of diagonalization
- Unfortunately, Hartree-Fock lacks
 - orrelation
 - dispersion interaction
 - ...

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

3 / 25

Problem solved?

Even at the Hartree-Fock level of theory there were a few bottlenecks

- evaluation of two-electron integrals $(\mathcal{O}(N^2))$
- diagonalization $(\mathcal{O}(N^3))$

The cost can be reduced to linear employing

- fast multipole method
- efficient sorting and prescreening techniques
- direct optimization instead of diagonalization

Unfortunately, Hartree-Fock lacks

- correlation
- dispersion interaction

• ...

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

3 / 25

Problem solved?

Even at the Hartree-Fock level of theory there were a few bottlenecks

- evaluation of two-electron integrals ($\mathcal{O}(N^2)$)
- diagonalization $(\mathcal{O}(N^3))$

The cost can be reduced to linear employing

- fast multipole method
- efficient sorting and prescreening techniques
- direct optimization instead of diagonalization

Unfortunately, Hartree-Fock lacks

- correlation
- dispersion interaction

...

A B M A B M

DFT to the rescue?

- Density Functional Theory
 - inherits Hartree-Fock efficiency
 - ships with correlation included
- Still, this is not enough DFT fails at
 - charge transfer processes
 - description of dispersion interaction

E 6 4 E 6

Does it really matter?

Dispersion effects may seem negligible, but Nature begs to differ

Exploiting sparsity in MP2 calculations

- second order perturbation theory providing correction to HF energy and wavefunction
- the first step in the ladder of post-HF methods
- reproduces most of electron correlation
- includes dispersion effects

A B + A B +

Canonical MP2

energy correction

$$E_2 = -\sum_{ij}^{\text{occ}} \sum_{ab}^{\text{virt}} \frac{(ia|jb)[2(ia|jb) - (ib|ja)]}{\epsilon_a + \epsilon_b - \epsilon_i - \epsilon_j}$$

crucial step

$$(ia|jb) = \sum_{\mu\nu\lambda\sigma} C_{\mu i} C_{\nu a} C_{\lambda j} C_{\sigma b}(\mu\nu|\lambda\sigma)$$

- AO integrals tensor is sparse $(\mathcal{O}(N^2))$
- C matrix and MO integrals tensor are dense
- time complexity: $\mathcal{O}(N^5)$, memory complexity: $\mathcal{O}(N^4)$
- calculations for large systems are practically impossible

ヘロト 人間ト ヘヨト ヘヨト

Canonical MP2

energy correction

$$E_{2} = -\sum_{ij}^{\text{occ}} \sum_{ab}^{\text{virt}} \frac{(ia|jb)[2(ia|jb) - (ib|ja)]}{\epsilon_{a} + \epsilon_{b} - \epsilon_{i} - \epsilon_{j}}$$

crucial step

$$(ia|jb) = \sum_{\mu\nu\lambda\sigma} C_{\mu i} C_{\nu a} C_{\lambda j} C_{\sigma b}(\mu\nu|\lambda\sigma)$$

- AO integrals tensor is sparse $(\mathcal{O}(N^2))$
- C matrix and MO integrals tensor are dense
- time complexity: $\mathcal{O}(N^5)$, memory complexity: $\mathcal{O}(N^4)$
- calculations for large systems are practically impossible

b 4 E b 4 E b

How to get better computational methods

Correlation in non-metallic systems is extremely local. We need to exploit the locality to get a lean and fast MP2

- Explicit division of the system into subsystems
 - treats each subsystem accurately
 - approximates interactions between subsystems
 - calculations are fast, but the division might be ambigous
 - error is difficult to control
- Exploiting inherent sparsity
 - reformulation of the formalism required to uncover sparsity
 - no additional physical approximations are made
 - high accuracy and easy to control error

< 日 > < 同 > < 三 > < 三 >

How to get better computational methods

Correlation in non-metallic systems is extremely local. We need to exploit the locality to get a lean and fast MP2

- Explicit division of the system into subsystems
 - treats each subsystem accurately
 - approximates interactions between subsystems
 - calculations are fast, but the division might be ambigous
 - error is difficult to control
- Exploiting inherent sparsity
 - reformulation of the formalism required to uncover sparsity
 - no additional physical approximations are made
 - high accuracy and easy to control error

ヘロト 人間ト ヘヨト ヘヨト

How to get better computational methods

Correlation in non-metallic systems is extremely local. We need to exploit the locality to get a lean and fast MP2

- Explicit division of the system into subsystems
 - treats each subsystem accurately
 - approximates interactions between subsystems
 - calculations are fast, but the division might be ambigous
 - error is difficult to control
- Exploiting inherent sparsity
 - reformulation of the formalism required to uncover sparsity
 - no additional physical approximations are made
 - high accuracy and easy to control error

・ロット 御り とうりょうりょう

Laplace transformation

definition

$$\mathcal{L}[f](x) = \int_0^\infty f(t) e^{-tx} dt$$

• transformation of constant function

$$\mathcal{L}[1](x) = \int_0^\infty e^{-tx} dt = \frac{1}{x}$$

• the transformation is applied to

$$E_{2} = -\sum_{ij}^{\text{occ}} \sum_{ab}^{\text{virt}} \frac{(ia|jb)[2(ia|jb) - (ib|ja)]}{\epsilon_{a} + \epsilon_{b} - \epsilon_{i} - \epsilon_{j}}$$

http://www.chemia.uj.edu.pl/~niedoida Exploiting sparsity in MP2 calculations KU KDM 2

3

A B A A B A

< □ > < 同 >

LT-MP2

Energy correction

$$E_{2} = -\int_{0}^{\infty} \sum_{iajb} (ia|jb) [2(ia|jb) - (ib|ja)] e^{-(\epsilon_{a} + \epsilon_{b} - \epsilon_{i} - \epsilon_{j})t} dt$$

denoting

$$e_2(t) = \sum_{iajb} (ia|jb)[2(ia|jb) - (ib|ja)]e^{-(\epsilon_a + \epsilon_b - \epsilon_i - \epsilon_j)t}$$

we get

$$E_2 = -\int_0^\infty e_2(t)dt$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

10 / 25

http://www.chemia.uj.edu.pl/~niedoida Exploiting sparsity in MP2 calculations KU KDM 2009 Zakopane

LT-AO-MP2

Defining transformed AO orbitals as

$$\underline{\mu} = \sum_{\nu} X_{\mu\nu}\nu \qquad \overline{\mu} = \sum_{\nu} Y_{\mu\nu}\nu$$

where X and Y are orbital-energy-weighted density matrices

$$X_{\mu\nu} = \sum_{i}^{\text{occ}} C_{\mu i} C_{\nu i} e^{\epsilon_{i} t} \qquad Y_{\mu\nu} = \sum_{a}^{\text{virt}} C_{\mu a} C_{\nu a} e^{-\epsilon_{a} t}$$

yields the workhorse of the method

$$\mathbf{e}_{2}=-\sum_{\mu
u\lambda\sigma}(\underline{\mu}\overline{
u}|\underline{\lambda}\overline{\sigma})[2(\mu
u|\lambda\sigma)-(\mu\sigma|\lambda
u)]$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What's in it for us?

- transformation seems to be as expensive as canonical one
- there is an additional cost due to numerical integration
- where are the gains?
- X and Y matrices are sparse for large molecules
- transformed integrals tensor shows sparse strucure as well, its non-zero elements can be identified efficiently
- both time and memory complexity can be reduced to $\mathcal{O}(N^2)$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

What's in it for us?

- transformation seems to be as expensive as canonical one
- there is an additional cost due to numerical integration
- where are the gains?
- X and Y matrices are sparse for large molecules
- transformed integrals tensor shows sparse strucure as well, its non-zero elements can be identified efficiently
- both time and memory complexity can be reduced to $\mathcal{O}(N^2)$

4 E N 4 E N

Computation flow

For each quadrature point

- calculate prescreening data
- execute four-stage transformation

• calculate and accumulate contribution to the energy correction

▶ < ∃ >

Data structures

The tensors we deal with are extremely s p a r s e

- We need data structures which exploit the sparsity
- To make things more complicated we require
 - efficient parallelization
 - fast browsing and manipulation
 - ability to perform single contraction in dense memory

4 1 1 1 4 1 1 1

Data structures

Data structures

- separate trees used at every quarter of four-stage transformation
- sequence of indices is chosen for each transformation differently to maximize performance
- dynamic rewriting to small dense matrices is used to speed-up algebra operations

A B M A B M

Multi-pass/parallel algorithm

$$e_{2} = -\sum_{\mu\nu\lambda\sigma} (\underline{\mu}\overline{\nu}|\underline{\lambda}\overline{\sigma})[2(\mu\nu|\lambda\sigma) - (\mu\sigma|\lambda\nu)]$$
$$= -\sum_{\mathcal{M}} \sum_{\mu\in\mathcal{M}} \left(\sum_{\nu\lambda\sigma} (\underline{\mu}\overline{\nu}|\underline{\lambda}\overline{\sigma})[2(\mu\nu|\lambda\sigma) - (\mu\sigma|\lambda\nu)] \right)$$

- for each quadrature point
 - generate optimal μ ranges ${\cal M}$
 - $\bullet~\mbox{for each subset}~\mathcal{M}$
 - calculate prescreening data
 - execute partial four-stage transformation
 - calculate and accumulate partial contribution to the energy correction

(**D**) (**A**) (**A**

Partial trees

Partial trees

Results

Performance

http://www.chemia.uj.edu.pl/~niedoida

Exploiting sparsity in MP2 calculations

-2 KU KDM 2009 Zakopane 20 / 25

Results

Performance

http://www.chemia.uj.edu.pl/~niedoida Exploiting sparsity in MP2 calculations

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 KU KDM 2009 Zakopane

▶ Ξ • ク ແ @ pane 21 / 25

Parallelization efficiency

Modest superlinear scaling observed ($\alpha = 0.94$, $\beta = 1.06$, $\gamma = 0.05$)

3

Conclusions

- our LT-AO-MP2 implementation fulfills the expected performance criteria
- the implementation exploits advanced memory management and dynamic data structures
- the design fits well into computational chemistry framework being developed in our group

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Future outlook

- reduction of the complexity to linear
- energy derivatives
- application for
 - nanotubes
 - biochemical systems

A B < A B </p>

< 口 > < 凸

3

Summary

- the vintage post-HF methods are getting boosters
- this way they may become competitive to DFT
- while the ideas are old, the practical implementations started appearing only recently
- it seems that the trend is getting stronger
- and we try to be a part of it

ヘロト 人間ト ヘヨト ヘヨト