
Zakopane 12-13.03.2009KU  KDM  2009    

27.02.2009

Piwowar M*, Kułaga T**, Jadczyk T***, Malawski M****, 

Matczyńska E*, Piątkowska W*****, Roterman I*

* Jagiellonian University – Medical College, Cracow, Poland 

** Jagiellonian University The Faculty of Mathematics and Computer Science

*** Academic Computer Centre – CYFRONET 

*** University of Science and Technology, Institute of Computer Science, AGH

***** University of Science and Technology, Faculty of Phisics, Astronomy 

Microarray data analysis – two approaches

Departament of Bioinformatics and Telemedicine 

Jagiellonian University, Medical College 



Outline 

Departament of Bioinformatics and Telemedicine 

Jagiellonian University, Medical College 

KU  KDM  2009    

12-13.03.2009

1.  Microarray technique - introduction

2. Structure of experiment

3. Two methods of microarray analysis 

- Measurement of assotiation: genes-biological issue

- Bayesian Networks procedure for creation of genes-

biological issue depedence networks

4. Virolab – enviroment for microarray analysis
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Microarrays can be used:

- to measure changes in expression levels

- to detect single nucleotide polymorphism (SNPs)

- in genotyping

- in resequencing mutant genomes

Micoarray technique - application
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Microarrays can be used:

- to measure changes in expression levels

- to detect single nucleotide polymorphism (SNPs)

- in genotyping

- in resequencing mutant genomes

Microarray technique - application

It helps:

• to discover and understand disease 

pathways

• to develop better methods of detection, 

treatment, and prevention
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NCBI/GEO – source of microarray data
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NCBI/GEO – source of microarray data
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Gene Expression Omnibus: 

a gene expression/molecular 

abundance repository

http://www.ncbi.nlm.nih.gov/geo/info/MIAME.html

GPL Platforms 5669

GSM Samples 288095

GSE Series 11372

Total 305136
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NCBI/GEO – source of microarray data

http://www.ncbi.nlm.nih.gov/geo/query/browse.cgi?view=platforms
http://www.ncbi.nlm.nih.gov/geo/query/browse.cgi?view=samples
http://www.ncbi.nlm.nih.gov/geo/query/browse.cgi?view=series
http://www.ncbi.nlm.nih.gov/geo/query/browse.cgi
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Bayesian Networks procedure

Data prossesing

Z correlation coefficient 

measurement 

Results interpretation 
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Gene-biological issue association 

by Z-association coefficient measurement 

Assotiation: genes-biological issue
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The method is based on a definition of 

dependence between two families of events:

Aj and Bi 

Aj

Aj : genes or group of genes (clusters)

Bi : biological issue
eg. Process, Component, Fucntion

Bi

12-13.03.2009
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The coefficient is defined on the basis of the probabilities of dependent events.

It gives information about dependence between particular genes and eg. 

biological issue. 

High level

Low level
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The coefficient is defined on the basis of the probabilities of dependent events.

It gives information about dependence between particular genes and biological 

issue. 
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Assotiation: genes-biological issue
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1. Z(A : B1;B2; : : : ;Bn)

2.  Z(A1;A2; : : : ;Ak : B)

3.  Z(A1;A2; : : : ;Ak : B1;B2; : : : ;Bn)
Aj

Bi
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Assotiation: genes-biological issue
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Bayesian Networks procedure for creation 

of genes-biological issue depedence networks
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Bayesian networks provide us with a clear and simple tool for casual 

interactions representation

Burglary

Emergency

call

Earthquake

Alarm

Bayesian Networks
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To fully describe Bayesian Network we need to know conditional 

distributions parameters

Burglary

Emergency

call

Earthquake

Alarm

Probability of a burglary?

Probability of an earthquake?

Probability of running the 

alarm if no disaster happens?

Probability of running the 

alarm if there was only a 

burglary?

etc.

Issue: Is it a correct casual interaction graph?

The major problem is to find the proper graph that would describe the 

phenomenon under study

12-13.03.2009

Bayesian Networks
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Dynamic Bayesian Networks

Data from microarray experiments may be time dependent

Ex. gene expression after 12, 24, 72 hours from the drug application

Bayesian Networks
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Given the data (obtained from NCBI) we are 

interested in finding the casual interactions network

The number of possible models grows at super-

exponential rate (2n*n) when rising the number 

of nodes in the graph.

For microarray experiments the number of entities 

we deal with (genes, gene clusters, time step, 

disease stage, etc.) can reach thousands.

Bayesian Networks
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Possible solutions for the graphical model selection 

problem:

use heuristic methods which divide the problem 

into smaller ones

use Markov Chain Monte Carlo simulation 

to draw samples from the posterior distribution

Calculation of the score function for the particular 

graph involves using complicated functions 

(such as the logarithm Γ-Euler function)

This together with overall complexity of the problem 

makes our task very computationaly demanding

Bayesian Networks
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• Environment for development and 

execution of collaborative 

applications

• Scripting-based experiment plans 

(Ruby) for representing complex 

applications

• Experiment Planning Environment

for experiment developers

• Experiment Management Interface

(portal) for experiment users

• Experiment Repository, Result 

Management

• Access to wide range of middleware 

(Grid, Web)

• http://virolab.cyfronet.pl



Microarray Experiments in Virolab
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• Structure of the tasks

• Available gems:

• DataProvider – retrieves data from NCBI, allows creating new datasets

• ClusteringAlgorithm – multiple algorithms are available (Agglomerative, 

Isodata, Shared Nearest Neighbor, Self-Organizing Maps, K-Means, Cobweb)

• ClusteringAlgorithmInstrumentation – Each algorithm may be tuned by setting 

different cluster metrics, sample metrics, cluster representation and cluster 

score functions



Virolab 
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