Theoretical Studies of Isomerism in Selected Ziegler-Natta Catalysts

Zygmunt Flisak

University of Opole

zgf@uni.opole.pl March 13, 2009

Zygmunt Flisak (University of Opole) Theoretical Studies of Isomerism in Selec

Milestones in Coordinative Olefin Polymerization

• Classical, Metallocene and Post-Metallocene Systems

Molecular Modeling: Bailar Method and DFT Calculations

- Bailar method
- Classical Ziegler-Natta Catalysts
- Bis(Phenoxyimine)-based Catalytical Systems

3 Conclusions and Prospect

Milestones in Coordinative Olefin Polymerization

1953 - Karl Ziegler discovers titanium based coordinative olefin polymerization catalysts

1980 - Walter Kaminsky develops extremely active and stereoselective metallocene catalysts

1999 - Terunori Fujita reports bis(phenoxyimine) catalysts of even higher activity

- Invented in 1957 to enumerate the isomers of octahedral complexes in an elegant way:
 - J.C. Bailar, Jr. J. Chem. Ed. 1957, 34, 334.

 Invented in 1957 to enumerate the isomers of octahedral complexes in an elegant way:

J.C. Bailar, Jr. J. Chem. Ed. 1957, 34, 334.

 Implemented in the FORTRAN programming language in 1969: W.E. Bennett, *Inorg. Chem.* 1969, 8, 1325. Invented in 1957 to enumerate the isomers of octahedral complexes in an elegant way:

J.C. Bailar, Jr. J. Chem. Ed. 1957, 34, 334.

- Implemented in the FORTRAN programming language in 1969: W.E. Bennett, *Inorg. Chem.* 1969, 8, 1325.
- Graphical interface was necessary...

Octahedral M[abcdef] complex

∢ 🗇 🕨

Octahedral M[abcdef] complex

30 isomers: 15 pairs of enentiomers

Heterogeneous system, M[aa(BD)(CE)] complex

・ロト ・ 週 ト ・ ヨト ・ ヨト

Heterogeneous system, M[aa(BD)(CE)] complex

20 isomers: 10 pairs of enantiomers

Heterogeneous system - chemistry of the system

Additional restrictions due to chemistry of the system:

- Methyl groups must be in the cis position with respect to each other,
- Bidentate ligand must not sterically interfere with the support surface.

There are only two pairs of diastereomers to be considered.

Insertion barriers calculated with DFT

	THF	THFFO	THFFO
		(M2)	(M3)
	Initiation		
$\Delta E^{\#}_{ins}$, ethylene	6.9	15.7	11.7
$\Delta E^{\#}_{ins}$, propylene max	7.9	17.8	12.4
$\Delta E^{\#}_{ins}$, propylene min	5.8	14.4	11.3
Propagation			
$\Delta E^{\#}_{ins}$, ethylene	5.1	13.9	9.8
$\Delta E^{\#}_{ins}$, propylene max	7.6	15.3	9.1
$\Delta E^{\#}_{ins}$, propylene min	2.0	12.6	7.8

Z. Flisak, Macromolecules 2008, 41, 6920.

• Regio- and stereoselectivity

	THF	THFFO	THFFO
		(M2)	(M3)
Initiation			
$\Delta \Delta E_{regio}$	3.6	1.8	3.8
$\Delta \Delta E_{stereo}$	0.6	0.6	0.4
Propagation			
$\Delta \Delta E_{regio}$	2.3	2.2	3.4
$\Delta \Delta E_{stereo}$	3.2	4.3	2.3

Z. Flisak, Macromolecules 2008, 41, 6920.

Bis(phenoxyimine) system, M[aa(BC)(BC)] complex

イロト スぽと イヨト イヨト

Bis(phenoxyimine) system, M[aa(BC)(BC)] complex

N-trans-O-cis N-cis-O-cis

N-cis-O-trans

8 isomers, including 3 pairs of enantiomers

Stability of Isomers and Corresponding Transition States

 \bullet What are the relative energies of the isomers? \rightarrow Talk by Patrycja Suchorska today at 13:30

Stability of Isomers and Corresponding Transition States

- \bullet What are the relative energies of the isomers? \rightarrow Talk by Patrycja Suchorska today at 13:30
- Insertion barriers, kcal/mol

lsomer	Ti imine	V imine	Ti amine	V amine
N-trans-O-cis	21.1	23.3	23.1	-
N-cis-O-cis	20.4	22.6	20.7	26.5
	17.1	16.7	19.9	21.1
N-cis-O-trans	13.4	16.6	13.2	20.6

Stability of Isomers and Corresponding Transition States

- What are the relative energies of the isomers? → Talk by Patrycja Suchorska today at 13:30
- Insertion barriers, kcal/mol

lsomer	Ti imine	V imine	Ti amine	V amine
N-trans-O-cis	21.1	23.3	23.1	-
N-cis-O-cis	20.4	22.6	20.7	26.5
	17.1	16.7	19.9	21.1
N-cis-O-trans	13.4	16.6	13.2	20.6

• A few termination barriers wrt insertion, kcal/mol

lsomer	Ti imine	V imine
N-trans-O-cis	15.8	19.0
N-cis-O-trans	8.6	10.2

- The existence of isomeric octahedral complexes must be considered in the theoretical study of:
 - Classical Ziegler-Natta catalysts supported on MgCl₂,
 - Post-metallocene phenoxyimine catalysts,
 - Other organometallic systems of similar geometry.

- The existence of isomeric octahedral complexes must be considered in the theoretical study of:
 - Classical Ziegler-Natta catalysts supported on MgCl₂,
 - Post-metallocene phenoxyimine catalysts,
 - Other organometallic systems of similar geometry.
- To get an insight into the action of the Fujita catalyst, this study will be supplemented by:
 - NMR spectra,
 - Laboratory polymerization tests,
 - Analyses of the resulting polymer.

This is not the equipment we utilize...

This is not the equipment we utilize...

Thank you for your kind attention