Solvatochromic shifts of a polarity probe – implicit and explicit solvent modeling

Andrzej Eilmes
Faculty of Chemistry, Jagiellonian University, Kraków
solvent effects in absorption spectra

Absorption spectra of organic molecules in gas phase and in condensed matter (in solutions) are different → solvatochromic shifts

Two important factors contributing to the solvent effect:

- electrostatic interactions with the medium
- specific interactions (e.g. hydrogen bonding)

Empirical parameters describe polarity/polarizability of the solvent and its ability to form hydrogen bonds.

Kamlet-Taft parameters – derived from experimental spectra of selected molecules serving as solvatochromatic probes.

Question: Are we able to reproduce the shifts in theoretical calculations?
solvent modeling: explicit vs. implicit

implicit solvent model (e.g. Polarizable Continuum Model):

- computationally cheap
- accounts mainly for electrostatics
- specific interactions are usually not reproduced
- no insight into individual interactions
solvent modeling: explicit vs. implicit

explicit solvent model:

- computationally demanding
- could describe specific interactions if appropriate method was used
- individual interactions can be traced
model system

- probe molecule: N,N-diethyl-4-nitroaniline

\[\text{O} \quad \text{N} \quad \text{N} \quad \text{O} \quad \text{O} \]

- four common molecular solvents: water, dimethylsulfoxide (DMSO), acetonitrile, acetone
- implicit solvent: variants of the PCM model
- explicit solvent: sequential MD/QM approach
- ZINDO/S, PM6-CIS and TDDFT used to compute excitation energies
dominant NTO pairs

vacuum

PM6–CIS

B3LYP–TDDFT

PCM water

PM6–CIS

B3LYP–TDDFT

KUKDM 14, Zakopane, March 13
implicit solvation

<table>
<thead>
<tr>
<th></th>
<th>water</th>
<th>DMSO</th>
<th>acetonitrile</th>
<th>acetone</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon_{\text{static}}, \varepsilon_{\infty})</td>
<td>78.4, 1.78</td>
<td>46.8, 2.01</td>
<td>35.7, 1.81</td>
<td>20.5, 1.85</td>
</tr>
<tr>
<td>exp.</td>
<td>430.5</td>
<td>411.5</td>
<td>397.9</td>
<td>396.5</td>
</tr>
<tr>
<td>TDDFT/PCM</td>
<td>392.8</td>
<td>394.3</td>
<td>392.1</td>
<td>391.2</td>
</tr>
<tr>
<td>TDDFT/PCM(equil. solv.)</td>
<td>417.4</td>
<td>416.2</td>
<td>415.2</td>
<td>412.4</td>
</tr>
<tr>
<td>TDDFT/PCM(st. spec. solv.)</td>
<td>426.3</td>
<td>427.8</td>
<td>425.0</td>
<td>423.3</td>
</tr>
<tr>
<td>TDDFT/PCM(SAS)</td>
<td>365.6</td>
<td>357.2</td>
<td>358.6</td>
<td>357.1</td>
</tr>
<tr>
<td>TDDFT/CPCM</td>
<td>394.5</td>
<td>396.3</td>
<td>394.0</td>
<td>393.3</td>
</tr>
<tr>
<td>TDDFT/SCIPCM</td>
<td>378.1</td>
<td>377.7</td>
<td>377.4</td>
<td>376.4</td>
</tr>
<tr>
<td>TDDFT/SMD</td>
<td>411.4</td>
<td>394.8</td>
<td>395.2</td>
<td>393.2</td>
</tr>
<tr>
<td>TDDFT/SMD(st. spec. solv.)</td>
<td>445.8</td>
<td>429.3</td>
<td>430.6</td>
<td>427.4</td>
</tr>
<tr>
<td>ZINDO/PCM</td>
<td>502.8</td>
<td>513.6</td>
<td>501.2</td>
<td>499.1</td>
</tr>
<tr>
<td>PM6-CIS/PCM</td>
<td>430.9</td>
<td>436.8</td>
<td>431.1</td>
<td>431.4</td>
</tr>
</tbody>
</table>

KUKDM 14, Zakopane, March 13
implicit solvation

- neither model gives satisfactory reproduction of experimental results
- usually very small differences between solvents and wrong relative shift DMSO vs. water
- models with SMD atomic radii or solvent accessible surface predict significantly larger shift for water
- problem with electrostatics?
- possible hydrogen bonds?
explicit solvent: MD simulations

Classical Molecular Dynamics simulations (Tinker v.5)
• MM3-based force field
• frozen geometry of the probe molecule
• periodic simulation box 500 – 1500 solvent molecules
• NVT ensemble at 300 K
• short (0.2 ns) equilibration, production trajectory collected for 1 ns
Got MD trajectories, what next?

acetonitrile

DMSO
InSilicoLab and Trajectory Sculptor

Preparation of large sets of input files from MD trajectories may be greatly facilitated by the Trajectory Sculptor tool in InSilicoLab.
reduced MD trajectories

water acetone

KUKDM 14, Zakopane, March 13
explicit solvent: simulated spectra

ZINDO/S
explicit solvent: simulated spectra

TDDFT (6-311+G* solute, 3-21G solvent)

KUKDM 14, Zakopane, March 13
explicit solvent: simulated spectra

- strikingly wrong results of semiempirical approaches
- problems with water
- qualitatively correct sequence from TD-DFT (but DMSO shift too small compared to acetone and acetonitrile)

exp. 430.5 411.5 397.9 396.5
explicit solvent: orbitals

ZINDO/S

PM6–CIS

B3LYP–TD

KUKDM 14, Zakopane, March 13
combined approach

• solute + explicit solvent molecules embedded in PCM continuous solvent

• improved convergence toward bulk solvent
conclusions

- Implicit solvent models encountered serious problems with proper description of solvatochromic shifts of a probe molecule.
- Problems related to electrostatics (atomic radii) and specific interactions.
- Semiempirical approaches in explicit solvent model fail to reproduce shifts for water.
- TDDFT method performs better (although not perfectly – need for better MD simulation and QC method?)
- Combined approach may improve the description of solvent effect at moderate cost, provided that the implicit method is reliable.

This research was supported in part by the National Science Centre grant no. 2012/07/B/ST4/00573.