Olefin Polymerization Activity by Electronic Alteration on Proximate of Phenyl Phenoxy Ligand in Half-Metallocene Titanium(IV) Complexes.

<u>Mateusz Brela</u>, Artur Michalak Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków, Poland

Zakopane, March 13th, 2014

Scope of the project

The substitution at the ligands is the main route used for modifying the properties of these complexes. Structural modifications:

-including steric tuning,

-changing the ligand backbone structure,

Presented research has been carried out in collaboration with the experimental groups from Korea University and SK Innovation Corp. (South Korea).

Scope of the project

The substitution at the ligands is the main route used for modifying the properties of these complexes. Structural modifications:

-including steric tuning,

-changing the ligand backbone structure,

Ligand electronic effects have been observed in many catalytic systems.

Presented research has been carried out in collaboration with the experimental groups from Korea University and SK Innovation Corp. (South Korea).

Main goal

The main goal of this study was to rationalize the experimental data concerning the activity of half-metallocene Titanium(IV) complexes by systematic, computational (DFT) studies.

In particular our study was focus on:

• influence of substituents on the Ti-O bonding, based on ETS-NOCV analysis;

 $\mathsf{R}=\mathsf{F},\mathsf{CI},\mathsf{H},\mathsf{C}(\mathsf{CH}_3)_2\mathsf{H},\mathsf{CH}_3,\mathsf{C}(\mathsf{CH}_3)_3,\mathsf{OCH}_3$

Main goal

The main goal of this study was to rationalize the experimental data concerning the activity of half-metallocene Titanium(IV) complexes by systematic, computational (DFT) studies.

In particular our study was focus on:

- influence of substituents on the Ti-O bonding, based on ETS-NOCV analysis;
- understanding the preference of the alternative ethylene insertion pathways;

 $\mathsf{R}=\mathsf{F},\mathsf{CI},\mathsf{H},\mathsf{C}(\mathsf{CH}_3)_2\mathsf{H},\mathsf{CH}_3,\mathsf{C}(\mathsf{CH}_3)_3,\mathsf{OCH}_3$

Main goal

The main goal of this study was to rationalize the experimental data concerning the activity of half-metallocene Titanium(IV) complexes by systematic, computational (DFT) studies.

In particular our study was focus on:

- influence of substituents on the Ti-O bonding, based on ETS-NOCV analysis;
- understanding the preference of the alternative ethylene insertion pathways;
- rationalizing the differences in experimental activity.

 $R=F,CI,H,C(CH_3)_2H,CH_3,C(CH_3)_3,OCH_3$

Computation

- Geometry optimization was performed for:
 - the titanium-based precatalysts;
 - cationic intermediates in the catalytic cycle: β -agostic alkyl complexes, ethylene π -complexes.
- The transition state optimization was carried out starting from the structures obtained from a series of constrained-optimizations with the particular C-C or C-H distance used as a respective reaction coordinate.
- The analysis of the titanium-oxygen and titanium-ethylene bonding was performed using ETS-NOCV approach [5].

Computational details

- ADF (Amsterdam Density functional) program, version 2010.02; DFT (Density Functional Theory) with Becke88/Pedrew86 exchange-correlation functional.
- A standard triple-ζ STO basis containing one set of polarization functions (TZP) was adopted for metal atoms, Ti.
- Standard double- ζ STO with one set of polarization functions (DZP) were used for the remaining elements (H, C, O, Cl and F).
- The 1s electrons of C, N, O, F as well as the 1s-2p electrons of Ti and Cl were treated as a frozen core.

	[Decompos	sition sche	eme (ETS	5)	Hirshfeld	Bond-
						Charge	Order
	∆ ∟ Pauli	Δ C elstat	Δ L steric	Δ C orb	Δ C bonding	on Ti	Ti-O
R=F	132,36	-257,82	-125,46	-157,84	-283,29	0,499	1,276
R=CI	131,75	-253,65	-121,90	-157,65	-279,55	0,498	1,266
R=H	134,53	-261,95	-127,42	-159,61	-287,03	0,496	1,275
R=C(CH ₃) ₂ H	136,54	-260,23	-123,68	-166,46	-290,14	0,490	1,292
R=CH ₃	135,81	-261,48	-125,67	-164,14	-289,81	0,491	1,287
R=C(CH ₃) ₃ $ $	135,77	-259,90	-124,14	-165,67	-289,80	0,495	1,300
R=OCH ₃	135,68	-263,07	-127,39	-166,40	-293,79	0,491	1,300

	[Decompos	sition sche	eme (ETS	5)	Hirshfeld	Bond-
					A E.	Charge	Order
	∆ ⊏ Pauli	∆ ⊏elstat	Δ L steric	∆ ∟ orb	Δ C bonding	on Ti	Ti-O
R=F	132,36	-257,82	-125,46	-157,84	-283,29	0,499	1,276
R=CI	131,75	-253,65	-121,90	-157,65	-279,55	0,498	1,266
R=H	134,53	-261,95	-127,42	-159,61	-287,03	0,496	1,275
$R=C(CH_3)_2H$	136,54	-260,23	-123,68	-166,46	-290,14	0,490	1,292
R=CH ₃	135,81	-261,48	-125,67	-164,14	-289,81	0,491	1,287
R=C(CH ₃) ₃	135,77	-259,90	-124,14	-165,67	-289,80	0,495	1,300
R=OCH ₃	135,68	-263,07	-127,39	-166,40	-293,79	0,491	1,300

Correlation ?

Chain propagation reactions studied

Alternative pathways for insertion of ethylene into propyl chain. Organometallics, Vol. 29, No. 21, 2010, Srebro, M. et. al.

Theoretical activity parameter

For catalyst A: contribution from alternative propagation pathways *i*

 $\mathbf{k}^{A} = \Sigma_{i} \, \pi_{\mathbf{i}} \, \mathbf{k}_{i}$

populations π_i , rate constants k_i – based on calculated ΔG

Relative activity of catalysts A and B: k^{A}/k^{B}

Example for two catalysts and two ,active' insertion pathways

Catalyst A

Catalyst B

M. Srebro, Ph.D.Thesis 2010

	π-comple	x path	∆G(π)	∆G(TS)	$\Delta {\sf G_a}^{\#}$	p _i	k _i	A _i =p _i ·k _i	A= ΣA _i · 100	A _{exp}
R=F	BS	syn	10,54	14,45	3,91	0,1261	0,0086	0,0011		
	BS	anti	13,20	16,86	3,66	0,0049	0,0116	0,0001	0.21	27.0
	FS	syn	9,21	11,00	1,79	0,6356	0,1132	0,0719	9,21	37,2
	FS	anti	10,23	12,09	1,87	0,1852	0,1025	0,0190		
R=CI	BS	syn	10,00	14,12	4,12	0,1469	0,0066	0,0010]	
	BS	anti	12,98	16,69	3,71	0,0039	0,0109	0,0000	6 95	26.0
	FS	syn	8,74	10,72	1,98	0,6793	0,0893	0,0607	0,05	30,0
	FS	anti	10,08	12,52	2,44	0,1335	0,0509	0,0068		
R=H	BS	syn	10,24	14,99	4,74	0,1441	0,0031	0,0004]	
	BS	anti	13,25	17,01	3,75	0,0037	0,0103	0,0000	5 1 2	25.2
	FS	syn	9,15	11,17	2,02	0,5478	0,0853	0,0467	5,12	3 <u>5</u> ,2
	FS	anti	10,41	13,19	2,78	0,1170	0,0339	0,0040		
R=C(CH ₃) ₂ H	BS	syn	14,84	18,85	4,01	0,0070	0,0075	0,0001]	
	BS	anti	14,54	19,91	5,37	0,0100	0,0014	0,0000	5.04	212
	FS	syn	11,09	13,27	2,18	0,6738	0,0699	0,0471	5,04	34,Z
	FS	anti	11,96	15,45	3,49	0,2315	0,0143	0,0033		
R=CH ₃	BS	syn	11,42	16,06	4,65	0,0574	0,0069	0,0004		
	BS	anti	14,11	17,42	3,31	0,0139	0,0005	0,0000	4.22	22 E
	FS	syn	9,81	12,22	2,40	0,5260	0,0742	0,0390	4,23	33,0
	FS	anti	10,83	14,14	3,31	0,1081	0,0264	0,0029 _		
$R=C(CH_3)_3$	BS	syn	10,75	14,83	4,08	0,0103	0,0069	0,0001		
	BS	anti	11,92	18,23	6,31	0,0125	0,0005	0,0000	2 77	22 E
	FS	syn	8,93	11,07	2,14	0,4732	0,0742	0,0351	5,77	55,0
	FS	anti	10,23	13,21	2,98	0,0972	0,0264	0,0026]	
R=OCH ₃	BS	syn	11,54	13,39	1,85	0,0338	0,1052	0,0036	<u>ן</u>	
	BS	anti	14,49	18,79	4,29	0,0009	0,0053	0,0000	1 40	<u>ງງ</u> ງ
	FS	syn	9,58	13,14	3,55	0,3667	0,0132	0,0048	1,49	∠∠ ,∠
	FS	anti	10,54	12,89	2,35	0,1143	0,0573	0,0066		

	π-comple	ex path	<u>∆</u> G(π)	∆G(TS)	$\Delta G_a^{\#}$	
R=F	BS	syn	10,54	14,45	3,91	
	BS	anti	13,20	16,86	3,66	
	FS	syn	9,21	11,00	1,79 🧲	
	FS	anti	10,23	12,09	1,87	
R=CI	BS	syn	10,00	14,12	4,12	
	BS	anti	12,98	16,69	3,71	
	FS	syn	8,74	10,72	1,98 🗲	
	FS	anti	10,08	12,52	2,44	
R=H	BS	syn	10,24	14,99	4,74	
	BS	anti	13,25	17,01	3,75	
	FS	syn	9,15	11,17	2,02 🦛	
	FS	anti	10,41	13,19	2,78	
R=C(CH ₃) ₂ H	H BS	syn	14,84	18,85	4,01	
	BS	anti	14,54	19,91	5,37	
	FS	syn	11,09	13,27	2,18 🥢	
	FS	anti	11,96	15,45	3,49	
R=CH ₃	BS	syn	11,42	16,06	4,65	
	BS	anti	14,11	17,42	3,31	
	FS	syn	9,81	12,22	2,40	
	FS	anti	10,83	14,14	3,31	
$R=C(CH_3)_3$	BS	syn	10,75	14,83	4,08	
	BS	anti	11,92	18,23	6,31	
	FS	syn	8,93	11,07	2,14 🖕	
	FS	anti	10,23	13,21	2,98	
R=OCH ₃	BS	syn	11,54	13,39	1,85	
	BS	anti	14,49	18,79	4,29	
	FS	syn	9,58	13,14	3,55	
	FS	anti	10,54	12,89	2,35 🧲	

	π-comple	x path	∆G(π)	∆G(TS)	$\Delta {\sf G_a}^{\#}$	pi			A _{exp}
R=F	BS	syn	10,54	14,45	3,91	0,1261			
	BS	anti	13,20	16,86	3,66	0,0049		9	07 0
	FS	syn	9,21	11,00	1,79	0,6356) , Z
	FS	anti	10,23	12,09	1,87	0,1852			
R=CI	BS	syn	10,00	14,12	4,12	0,1469			
	BS	anti	12,98	16,69	3,71	0,0039	4	2	26.0
	FS	syn	8,74	10,72	1,98	0,6793			0,0
	FS	anti	10,08	12,52	2,44	0,1335			
R=H	BS	syn	10,24	14,99	4,74	0,1441			
	BS	anti	13,25	17,01	3,75	0,0037		2	25.2
	FS	syn	9,15	11,17	2,02	0,5478			JJ,Z
	FS	anti	10,41	13,19	2,78	0,1170	`		
R=C(CH ₃) ₂ H	I BS	syn	14,84	18,85	4,01	0,0070			
	BS	anti	14,54	19,91	5,37	0,0100	4	3	84.2
	FS	syn	11,09	13,27	2,18	0,6738			/ , ∠
	FS	anti	11,96	15,45	3,49	0,2315			
R=CH ₃	BS	syn	11,42	16,06	4,65	0,0574			
	BS	anti	14,11	17,42	3,31	0,0139		3	83 E
	FS	syn	9,81	12,22	2,40	0,5260 ┥			5,0
	FS	anti	10,83	14,14	3,31	0,1081			
R=C(CH ₃) ₃	BS	syn	10,75	14,83	4,08	0,0103			
	BS	anti	11,92	18,23	6,31	0,0125		3	83 G
	FS	syn	8,93	11,07	2,14	0,4732			,0
	FS	anti [•]	10,23	13,21	2,98	0,0972			
R=OCH ₃	BS	syn	11,54	13,39	1,85	0,0338			
	BS	anti	14,49	18,79	4,29	0,0009		2)))
	FS	syn	9,58	13,14	3,55	0,3667		2	-
	FS	anti	10,54	12,89	2,35	0,1143			

	π-comple	x path	<u>∆</u> G(π)	∆G(TS)	$\Delta {\sf G_a}^{\#}$	p _i	k _i	_	A _{exp}
R=F	BS	syn	10,54	14,45	3,91	0,1261	0,0086	-	
	BS	anti	13,20	16,86	3,66	0,0049	0,0116		27.0
	FS	syn	9,21	11,00	1,79	0,6356	0,1132		37,2
	FS	anti	10,23	12,09	1,87	0,1852	0,1025		
R=CI	BS	syn	10,00	14,12	4,12	0,1469	0,0066		
	BS	anti	12,98	16,69	3,71	0,0039	0,0109		26.0
	FS	syn	8,74	10,72	1,98	0,6793	0,0893		30,0
	FS	anti	10,08	12,52	2,44	0,1335	0,0509		
R=H	BS	syn	10,24	14,99	4,74	0,1441	0,0031		
	BS	anti	13,25	17,01	3,75	0,0037	0,0103		25.0
	FS	syn	9,15	11,17	2,02	0,5478	0,0853		3 5,2
	FS	anti	10,41	13,19	2,78	0,1170	0,0339		
R=C(CH ₃) ₂ H	BS	syn	14,84	18,85	4,01	0,0070	0,0075		
	BS	anti	14,54	19,91	5,37	0,0100	0,0014		21 0
	FS	syn	11,09	13,27	2,18	0,6738	0,0699		34,2
	FS	anti	11,96	15,45	3,49	0,2315	0,0143		
R=CH ₃	BS	syn	11,42	16,06	4,65	0,0574	0,0069	-	
	BS	anti	14,11	17,42	3,31	0,0139	0,0005		22.6
	FS	syn	9,81	12,22	2,40	0,5260	0,0742		55,0
	FS	anti	10,83	14,14	3,31	0,1081	0,0264		
$R=C(CH_3)_3$	BS	syn	10,75	14,83	4,08	0,0103	0,0069		
	BS	anti	11,92	18,23	6,31	0,0125	0,0005		33.6
	FS	syn	8,93	11,07	2,14	0,4732	0,0742		55,0
	FS	anti	10,23	13,21	2,98	0,0972	0,0264		
R=OCH ₃	BS	syn	11,54	13,39	1,85	0,0338	0,1052		
	BS	anti	14,49	18,79	4,29	0,0009	0,0053		うつ つ
	FS	syn	9,58	13,14	3,55	0,3667	0,0132		22,2
	FS	anti	10,54	12,89	2,35	0,1143	0,0573		

	π-comple	x path	<u>∆</u> G(π)	∆G(TS)	$\Delta G_a^{\#}$	pi	k _i	A _i =p _i ·k _i	A _{exp}
R=F	BS	syn	10,54	14,45	3,91	0,1261	0,0086	0,0011	
	BS	anti	13,20	16,86	3,66	0,0049	0,0116	0,0001	27.0
	FS	syn	9,21	11,00	1,79	0,6356	0,1132	0,0719 ┥	37,2
	FS	anti	10,23	12,09	1,87	0,1852	0,1025	0,0190	
R=CI	BS	syn	10,00	14,12	4,12	0,1469	0,0066	0,0010	
	BS	anti	12,98	16,69	3,71	0,0039	0.0109	0,0000	26 O
	FS	syn	8,74	10,72	1,98	0,6793	0.0893	0,0607 ┥	30,0
	FS	anti	10,08	12,52	2,44	0,1335	0,0509	0,0068	
R=H	BS	syn	10,24	14,99	4,74	0,1441	0,0031	0,0004	
	BS	anti	13,25	17,01	3,75	0,0037	0.0103	0,0000	25.2
	FS	syn	9,15	11,17	2,02	0,5478	0,0853	0,0467 🤙	3 5,2
	FS	anti	10,41	13,19	2,78	0,1170	0,0339	0,0040 🗬	
R=C(CH ₃) ₂ H	I BS	syn	14,84	18,85	4,01	0,0070	0,0075	0,0001	
	BS	anti	14,54	19,91	5,37	0,0100	0,0014	0,0000	21 2
	FS	syn	11,09	13,27	2,18	0,6738	0,0699	0,0471 🤙	34,2
	FS	anti	11,96	15,45	3,49	0,2315	0,0143	0,0033 🔷	
R=CH ₃	BS	syn	11,42	16,06	4,65	0,0574	0,0069	0,0004	
	BS	anti	14,11	17,42	3,31	0.0139	0,0005	0,0000	33 G
	FS	syn	9,81	12,22	2,40	0,5260	0,0742	0,0390 🔶	55,0
	FS	anti	10,83	14,14	3,31	0,1081	0,0264	0,0029	
$R=C(CH_3)_3$	BS	syn	10,75	14,83	4,08	0,0103	0,0069	0,0001	
	BS	anti	11,92	18,23	6,31	0,0125	0,0005	0,0000	33 G
	FS	syn	8,93	11,07	2,14	0,4732	0,0742	0,0351 🌰	55,0
	FS	anti	10,23	13,21	2,98	0,0972	0,0264	0,0026	
R=OCH ₃	BS	syn	11,54	13,39	1,85	0,0338	0,1052	0,0036	
	BS	anti	14,49	18,79	4,29	0,0009	0,0053	0,0000	
	FS	syn	9,58	13,14	3,55	0,3667	0,0132	0,0048 🦿	~~,~
	FS	anti	10,54	12,89	2,35	0,1143	0,0573	0,0066 🗬	

	π-comple	x path	∆G(π)	∆G(TS)	$\Delta {\sf G_a}^{\#}$	p _i	k _i	A _i =p _i ·k _i	A= ∑A _i · 100	A _{exp}
R=F	BS	syn	10,54	14,45	3,91	0,1261	0,0086	0,0011		
	BS	anti	13,20	16,86	3,66	0,0049	0,0116	0,0001	0.01	27.2
	FS	syn	9,21	11,00	1,79	0,6356	0,1132	0,0719	9,21	37,2
	FS	anti	10,23	12,09	1,87	0,1852	0,1025	0,0190		
R=CI	BS	syn	10,00	14,12	4,12	0,1469	0,0066	0,0010		
	BS	anti	12,98	16,69	3,71	0,0039	0,0109	0,0000	6 95	26.0
	FS	syn	8,74	10,72	1,98	0,6793	0,0893	0,0607	0,05	30,0
	FS	anti	10,08	12,52	2,44	0,1335	0,0509	0,0068		
R=H	BS	syn	10,24	14,99	4,74	0,1441	0,0031	0,0004		
	BS	anti	13,25	17,01	3,75	0,0037	0,0103	0,0000	5 1 2	25.2
	FS	syn	9,15	11,17	2,02	0,5478	0,0853	0,0467	5,12	3 <u>5</u> ,2
	FS	anti	10,41	13,19	2,78	0,1170	0,0339	0,0040		
R=C(CH ₃) ₂ H	BS	syn	14,84	18,85	4,01	0,0070	0,0075	0,0001]	
	BS	anti	14,54	19,91	5,37	0,0100	0,0014	0,0000	5.04	24.2
	FS	syn	11,09	13,27	2,18	0,6738	0,0699	0,0471	5,04	34,2
	FS	anti	11,96	15,45	3,49	0,2315	0,0143	0,0033		
R=CH ₃	BS	syn	11,42	16,06	4,65	0,0574	0,0069	0,0004]	
	BS	anti	14,11	17,42	3,31	0,0139	0,0005	0,0000	4.22	22 6
	FS	syn	9,81	12,22	2,40	0,5260	0,0742	0,0390	4,23	33,0
	FS	anti	10,83	14,14	3,31	0,1081	0,0264	0,0029	J	
$R=C(CH_3)_3$	BS	syn	10,75	14,83	4,08	0,0103	0,0069	0,0001		
	BS	anti	11,92	18,23	6,31	0,0125	0,0005	0,0000	2 77	22 6
	FS	syn	8,93	11,07	2,14	0,4732	0,0742	0,0351	5,77	55,0
	FS	anti	10,23	13,21	2,98	0,0972	0,0264	0,0026		
R=OCH ₃	BS	syn	11,54	13,39	1,85	0,0338	0,1052	0,0036		
	BS	anti	14,49	18,79	4,29	0,0009	0,0053	0,0000	L 1 10	ว ว ว
	FS	syn	9,58	13,14	3,55	0,3667	0,0132	0,0048	1,49	∠∠ ,∠
	FS	anti	10,54	12,89	2,35	0,1143	0,0573	0,0066		

Theoretical vs experimental activity

Theoretical vs experimental activity

Populations of pathways

	π-complex	path	∆G(π)	$\Delta G(TS)$	$\Delta {\sf G_a}^{\#}$	p _i	k _i	$A_i = p_i \cdot k_i$	A= ΣA _i · 100	A_{exp}
R=F	BS	syn	10,54	14,45	3,91	0,1261	0,0086	0,0011		
	BS	anti	13,20	16,86	3,66	0,0049	0,0116	0,0001	L 0 21	27.2
	FS	syn	9,21	11,00	1,79	0,6356	0,1132	0,0719	9,21	57,2
	FS	anti	10,23	12,09	1,87	0,1852	0,1025	0,0190		
	BHT	syn	12,06	14,97	2,90	0,0197	0,0291	0,0006		
	BHT	anti	11,77	15,99	4,23	0,0284	0,0058	0,0002		
R=H	BS	syn	10,24	14,99	4,74	0,1441	0,0031	0,0004	7	
	BS	anti	13,25	17,01	3,75	0,0037	0,0103	0,0000	5 12	25.2
	FS	syn	9,15	11,17	2,02	0,5478	0,0853	0,0467	5,12	55,2
	FS	anti	10,41	13,19	2,78	0,1170	0,0339	0,0040		
	BHT	syn	10,10	17,16	7,06	0,1711	0,0002	0,0000		
	BHT	anti	12,03	15,74	3,72	0,0164	0,0108	0,0002		
R=CH ₃	BS	syn	11,42	16,06	4,65	0,0931	0,0035	0,0003		
	BS	anti	14,11	17,42	3,31	0,0035	0,0177	0,0001	- 3 00	33.6
	FS	syn	9,81	12,22	2,40	0,6577	0,0536	0,0353	5,50	33,0
	FS	anti	10,83	14,14	3,31	0,1898	0,0177	0,0034		
	BHT	syn	12,28	17,22	4,94	0,0325	0,0024	0,0001		
	BHT	anti	12,55	18,17	5,62	0,0234	0,0011	0,0000		
R=OCH ₃	BS	syn	11,54	13,39	1,85	0,0338	0,1052	0,0036		
	BS	anti	14,49	18,79	4,29	0,0009	0,0053	0,0000	- 1 40	<u>, , , , , , , , , , , , , , , , , , , </u>
	FS	syn	9,58	13,14	3,55	0,3667	0,0132	0,0048	1,49	22,2
	FS	anti	10,54	12,89	2,35	0,1143	0,0573	0,0066		
	BHT	syn	12,5	17,4	4,9	0.0111	0,0025	0,0000		
	BHT	anti	9,4	13,9	4,5	0,4732	0,0040	0,0019		

Populations of pathways

	π-complex	path	ΔG(π)	∆G(TS)	$\Delta G_a^{\#}$	pi	k _i	A _i =p _i ·k _i	$A = \Sigma A_i \cdot 100$	A _{exp}
R=F	BS	syn	10,54	14,45	3,91	0,1261	0,0086	0,0011]	
	BS	anti	13,20	16,86	3,66	0,0049	0,0116	0,0001	9 21	37.2
	FS	syn	9,21	11,00	1,79	0,6356	0,1132	0,0719	5,21	57,2
	FS	anti	10,23	12,09	1,87	0,1852	0,1025	0,0190		
	BHT	syn	12,06	14,97	2,90	0,0197	0,0291	0,0006		
	BHT	anti	11,77	15,99	4,23	0,0284	0,0058	0,0002		
R=H	BS	syn	10,24	14,99	4 74	0 1441	0 0031	0,0004		
	BS	anti	13,25	17,01				0,0000	- 5.12	35.2
	FS	syn	9,15	11,17		002	20	0,0467	5,22	55,2
	FS	anti	10,41	13,19		0,05	50	0,0040		
	BHT	syn	10, 10	17,16				0,0000		
	BHT	anti	12,03	15,74			$\square \square$	0,0002		
R=CH ₃	BS	syn	11,42	16,06		0,00	09	0,0003		
	BS	anti	14,11	17,42				0,0001	- 3.90	33.6
	FS	syn	9,81	12,22		036	67	0,0353	5,50	55,0
	FS	anti	10,83	14,14		0,50		0,0034]	
	BHT	syn	12,28	17,22			40	0,0001		
	BHT	anti	12,55	18,17		0.11	43	0,0000		
R=OCH ₃	BS	syn	11,54	13,39				0.0036	7	
	BS	anti	14,49	18,79			11	0,0)		22.2
	FS	syn	9,58	13,14		0,01	. 土 土	6	1,49	22,2
	FS	anti	10,54	12,89				0-0066]	
	BHT	syn	12,5	17,4		0 /7	22	0,0000		
	BHT	anti	9,4	13,9		0,4/	JZ	0,0019		

Theoretical vs experimental activity

	π-complex	path	ΔE_{Pauli}	ΔE_{elstat}	ΔE_{steric}	ΔE_{orb}	$\Delta E_{bonding}$	A _i =p _i ·k _i
R=F	BS	syn	122,87	-245,72	-122,85	-148,40	-271,25	0,0011
	BS	anti	123,38	-243,55	-120,17	-148,07	-26 <u>8,24</u>	0,0001
	FS	syn	120,61	-244,18	-123,57	-149,00 <	-272,57	0,0719
	FS	anti	119,95	-241,21	-121,26	-151,04	-272,30	0,0190
R=Cl	BS	syn	121,73	-241,31	-119,58	-147,76	-267,34	0,0010
	BS	anti	122,51	-239,40	-116,89	-147,59	- <u>264,48</u>	0,0000
	FS	syn	119,36	-239,92	- 120,5 6	-148,11 <	-268,67	0,0607
	FS	anti	118,84	-236,90	-118,06	-150,25	-268,31	0,0068
R=H	BS	syn	123,30	-248,99	-125,69	-149,24	-274,92	0,0004
	BS	anti	124,58	-247,14	-122,56	-149,08	-271.64	0.0000
	FS	syn	121,23	-247,85	-126,62	-149,45 🤇	-276,06	0,0467
	FS	anti	121,08	-244,71	-123,63	-151,79	-275,43	0,0040
R=C(CH ₃) ₂ H	BS	syn	124,98	-247,29	-122,31	-154,17	-276,48	0,0001
	BS	anti	126,45	-245,57	-119,12	-154,08	-273,20	0,0000
	FS	syn	122,98	-245,28	-122,30	-155,77 🄇	-278,07	0,0471
	FS	anti	122,37	-243,52	-121,15	-156,98	-278,13	0,0033
R=CH₃	BS	syn	124,73	-249,07	-124,34	-152,52	-276,86	0,0003
	BS	anti	125,97	-246,78	-120,81	-152,49	-273,29	0,0001
	FS	syn	122,52	-247,47	-124,95	-153,64 <	-278,58	0,0353
	FS	anti	121,85	-244,81	-122,96	-155,29	-278,25	0,0034
R=C(CH ₂) ₂	BS	syn	125,31	-247,69	-122,38	-155,01	-277,38	0,0001
- 3-3	BS	anti	126,80	-245,63	-118,83	-154,83	-273,66	0,0000
	FS	syn	123,11	-245,41	-122,30	-156,15 <	-278,44	0,0351
	FS	anti	122,66	-243,28	-120,62	-157,53	-278,15	0,0026
R=OCH ₃	BS	syn	125,73	-251,26	-125,53	-155,40	-280,92	0,0036
	BS	anti	126,46	-248,96	-122,50	-154,99	-277,49	0,0000
	FS	syn	123,00	-248,75	-125,75	-156,95	-282,70	0,0048
	FS	anti	121,66	-246,44	-124,78	-158,18 <	-282,95	0,0066

	π-complex	path	ΔE_{Pauli}	ΔE_{elstat}	ΔE_{steric}	ΔE_{orb}	$\Delta E_{bonding}$	$A_i = p_i \cdot k_i$
R=F	BS	syn					-271,25	0,0011
	BS	anti				•	-268,24	0,0001
	FS	syn			F	syn (-272,57	0,0719
	FS	anti					-272,30	0,0190
R=Cl	BS	syn					-267,34	0,0010
	BS	anti			EC		-264,48	0,0000
	FS	syn			r3	_syn (-268,67	0,0607
	FS	anti					-268,31	0,0068
R=H	BS	syn					-274,92	0,0004
	BS	anti			F		-271.64	0.0000
	FS	syn			FS	<u>syn</u>	-276,06	0,0467
	FS	anti				 	-275,43	0,0040
R=C(CH ₃) ₂ H	BS	syn					-276,48	0,0001
	BS	anti					-273,20	0,0000
	FS	syn			FS	syn (-278,07	0,0471
	FS	anti					-278,13	0,0033
R=CH₃	BS	syn					-276,86	0,0003
	BS	anti)	-273,29	0,0001
	FS	syn			FS	_syn <	-278,58	0,0353
	FS	anti					-278,25	0,0034
R=C(CH ₂) ₂	BS	syn					-277,38	0,0001
- 3-3	BS	anti					-273,66	0,0000
	FS	syn			FS	<u>syn</u>	-278,44	0,0351
	FS	anti					-278,15	0,0026
R=OCH ₃	BS	syn					-280,92	0,0036
	BS	anti					-277,49	0,0000
	FS	syn					- <u>282,70</u>	0,0048
	FS	anti			FS	🗧 anti <	-282,95	0,0066

Orbital interaction in precatalyst.

 ΔE_{orb}^{1} =-53.53kcal/mol ΔE_{orb}^{2} =-28.32kcal/mol ΔE_{orb}^{3} =-29

 ΔE_{orb}^{3} =-29.55kcal/mol

The ETS-NOCV dominating contribution to the deformational density, $\Delta \rho$, according to the ETS-NOCV analysis for the interaction of Ti-O bond.

The fragment selection:

Orbital interaction.

Main Conclusions

- Theoretical activity parameter, based on both, the activation barriers and the π -complex populations, correlates well with experimental activity.
- The nature of electron withdrawing and donating groups was characterized by ETS-NOCV methodology.
- The substituents on the ligand affect the charge on Ti and the strenght of Ti-O bonding (electron push-pull effect); the changes in the orbital interaction term are mostly responsible for the substituent effect on the total bonding energy.

This work was supported by the International PhD-studies programme at the Faculty of Chemistry Jagiellonian University within the Foundation for Polish Science MPD Programme co-financed by the EU European Regional Development Fund.

UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ ROZWOJU REGIONALNEGO

Thank you very much

Domain-Oriented Services and Resources of Polish Infrastructure for Supporting Computational Science in the European Research Space

PLGrid Plus

