DFT study on the cobalt(III) catalysts for CO₂/epoxide copolymerization

Karol Dyduch

Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków, Poland

supervisors: prof. dr hab. Artur Michalak dr Monika Srebro

Inoue (1969) mixture of ZnEt₂ and H₂O was active for catalysing copolymerization of propylene oxide and CO₂

Inoue (1969) TOF: 0.12 h^{-1} ZnEt₂/H₂O

Inoue (1969) TOF: 0.12 h^{-1} ZnEt₂/H₂O

Inoue (1969) TOF: 0.12 h⁻¹

Coates (2003) TOF: 17-81 h⁻¹

Bun Yeoul Lee (2009) TOF: 16 000 h⁻¹

Bun Yeoul Lee (2009) TOF: 16 000 h⁻¹

Catalytic systems – hypothetical key factors

votor T

Catalytic systems – hypothetical key factors

How does **the length of the alkyl chain** linking the N⁺-salt with the salen ligand **affect stability** of structure?

 $X^{-}=CH_{3}COO^{-}$ $Y^{-}=NO_{3}^{-}$

Catalytic systems – first model

 $X = CH_3COC$ $Y = NO_3^-$

Catalytic systems – first model

Catalytic systems – advanced models

Catalytic systems – static calculations

CP2K program (static calculations)

for all elements DZVP basis was used; XC functional Becke88Perdew+Grimme3 box with edge equal to 40 Å ; cut off 260;

CP2K program (dynamic and static calculations)

for all elements DZVP basis was used; XC functional Becke88Perdew+Grimme3 box with edge equal to 40 Å ; cut off 260; dynamic calculations T=300K

How does **the length of the alkyl chain** linking the N⁺-salt with the salen ligand **affect stability** of structure?

distances between cobalt atom and nitrogen atoms from chains with $(Bu)_3N^+$ group – colors on the picture corresponds do the colors on the graph (top);

changes in potential energy along MD trajcetory (bottom graph)

III cisβ

starting geometry t=0

N-Co 9.85 A N-Co 9.44 A N-Co 10.95 N-Co 8.07 25

III cisβ

time [fs]

Summary

With the increase in chain length the preference of $\mbox{cis}\beta$ is stronger

Chain movement is strongly affected by the chain-length

Future

bonding of co-monomers to metal center

investigation of elementary reactions in the copolymerization mechanism

Future research – mechanism of copolymerization

Acknowledgments

