
ON ACCELERATING EVOLUTIONARY  

ALGORITHMS COMPUTATION APPLIED TO 

PHYSICALLY BASED APPROXIMATION 

Janusz Orkisz, Maciej Głowacki 
 

Institute for Computational Civil Engineering 

Cracow University of Technology 



Contents 
   

 1.  Introduction 

 2.  Physically Based Approximation 

 3.  EA acceleration techniques considered 

  -  Introduction 

  -  Smoothing and balancing 

  -  A’posteriori solution error analysis 

  -  Step by step mesh refinement 

  -  Mesh refinement combined with error analysis 

 4.  Benchmark problems analysis 

 5.  Final remarks 



Introduction 

Research motivation 

     A variety of engineering and scientific tasks may be formulated as large, non-linear,   

     constraint optimization problems, e.g.: 

           1. Residual stress analysis in railroad rails and vehicle wheels  

 (direct  theoretical problem).  

           2. Physically based approximation of experimental data, e.g. 

 residual stress reconstruction using experimentally measured data e.g.  

               strain gauge technique or Moire interferometry  

 (inverse  hybrid theoretical – experimental problem).       
 

     Efficient solution of such type optimization problems is crucial for various practical    

     engineering applications. 
 

     Solution methods used (convex, and non-convex problems): 

            deterministic like   

 -  FDM (Feasible Directions Method)  

 -  Penalty Methods      

            and/or  stochastic like   

 -  AI (e.g. Evolutionary Algorithms) 



Introduction 
 

Research objective  
 

General  

    Significant acceleration of the EA applied to large, non-linear constraint optimization   

    problems, where a function (given e.g. by its nodal values) is searched.  

 

    The speed-up is based on: 
 

          - choice of the most efficient combination of the evolutionary operators:  

 selection, crossing-over, mutation, 
 

          - use of several new simple speed-up techniques proposed here,  
 

          - further development of chosen existing acceleration methods. 
 

 

 

Particular 

    Formulation and testing applicability of the accelerated  EA  to solution of 

    engineering problems resulting from Physically Based Approximation 

    of experimental and/or numerical data. 

 



      Main features: 

 - simultaneous use of all available information 

          experimental data  (various measurements) 

          theory  (e.g. principles of mechanics, equilibrium equations, …) 

          heuristic principles (e.g. smoothing) 

 - use rather physics than mathematics for smoothing 

          principles, physical equations, boundary conditions 

          true statistics of measurements, error bounds 

          weighting factors dependent on information reliability 

          probability type and distribution 

 - other interpretation of the PBA approach 

          solution method of  inverse  problems 

          hybrid method 

          regularization method 

          smoothing method for a’posteriori error analysis 

          mathematical formulation:  constrained optimization  method 

  Physically  based  approximation (PBA) 
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Theoretical  requirements 

Determine 

 Functional 

 Constraints 

 

Determine a functional 

  

          (i)  Theory is  known  (in mechanics, e.g. the total complementary energy) 
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          (ii)  theory is  not known – heuristic principle – e.g. smoothness requirement 
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Determine constraints 

          Example of                             constraints for the total complementary  

          energy functional equilibrium equations 

 
 

 

 

          and static boundary conditions 
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Introduce 
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Experimental  requirements 
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Formulation  of the optimization problems 
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 How to find the weighting factor, i.e. to determine a  reasonable balance 
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Two subsequent  optimization  problems are to be solved 

 

(i) Find                   that yields the stationary value of the functional 
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- Selection operators: 

  rank 

  tournament 

 

- Crossing-over operators: 

 simple 

 arithmetic 

 heuristic 

 

- Mutation operators: 

  uniform 

  non-uniform  

  boundary 
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Acceleration techniques considered 
 

Newly proposed simple acceleration techniques: 

 

     - smoothing of the direct EA solution, 

 

     - balancing of smoothed EA solution, 

 

     - use of a’ posteriori error analysis and non-standard parallel and     

       distributed calculations, 

 

     - adaptive step by step mesh refinement, 

 

 

Development of chosen existing techniques: 

   

     - new evolutionary operators (e. g. gradient mutation, cloning), 

 

     - hybrid algorithms (EA + deterministic method). 

 

     - distributed and parallel algorithms. 



A’ posteriori solution error analysis 
 

 

 

     Solution of optimization problem 

  true 

  rough solution 

  improved reference solution  -  hierarchic approach   

  new solutions and postprocessing required 
 

     Local a’ posteriori error  

             true error    estimated error 

 

     Global a’ posteriori solution error 

           true error          estimated error 

 

     Error norms:  mean square, maximum 

 

     Estimation quality  –  effectivity index 

 

     Fitness function value            control 
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Generation of reference solutions 
 

    1. In the deterministic methods  –  well known, e.g.  hierarchic approach 

 h - type, p - type, h/p - type,  and  residual,  smoothing approaches,  also 

 error indicators 
 

 

    2. In the Evolutionary Algorithms 

          Approach 

 -     generation of population of  m  independent solutions (chromosomes), 

 -     weighted averaging of these results over the whole population, 

 -     postprocessing (HO smoothing) of the above averaged discrete solution  

       by means of the MWLS (or PBA) approximation, 

          Notice 

 h - type  and/or  p - type  estimation approach would be also possible. 
 

 

       the exact value 

       mean value  

       (center of gravity) 

       independent solution 
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 Use of a’ posteriori error analysis for the EA solution process 

 acceleration 
 

 

     Approach concept 

          - Find or estimate EA solution error in the whole domain. 

          - Intensify calculations in zones where solution error is larger  than a prescribed    

 value e.g. the mean error. 

 Do this by means of modification of the basic EA operators:  

  selection,    mutation , and    crossing-over.     



Step by step mesh refinement 
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Use of mesh refinement with a’posteriori error estimation 

Strategy 

 

 (i) calculation of solution on a coarse mesh  

 (ii) smoothing of rough solution (e.g. using MWLS method) 

 (iii) mesh refinement and the best approximation (or interpolation) of    

                                initial function values at inserted nodes 

 (iv) use of obtained solution as the initial reference solution for  

  a’posteriori error estimation 

 (v) use of weighted solution averaging for further reference  

  solutions generation and a’posteriori error analysis 

 (vi) repetition of the procedure given above until a sufficiently   

  dense mesh is reached 

 



    Problem formulation: 

   Simulated pseudo experimental                                                are given                        

    Find 
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Benchmark problem (1):   Smoothing of beam deflections 
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Smoothing of beam deflections 
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Smoothing of beam deflections 
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Benchmark problem (2):   Residual stress reconstruction 

in thick-walled cylinder under cyclic pressure (2D  model) 

Simulation  of  strain gauge  technique 

Stage I 
 

 

 

Find the stationary point of the functional 

  

 

satisfying the equality constraints 
 

 

 

 

 

   equilibrium eq. 
    

   boundary cond. 

   incompressibility eq. 

 

Stage II 
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satisfying the inequality constraints 
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Residual stress reconstruction  -  numerical results  
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Residual stress reconstruction  -  numerical results  
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Residual stress reconstruction  -  numerical results  
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Final remarks 
 

    Summary 
 

      - Many scientific and technical tasks may be expressed in terms of non-linear,   

        constraint optimization problems. In a wide class of such problems the objective is    

        to find an unknown function, mostly in a discrete form. 

 

      - Optimization problems may be solved by means of either the deterministic or     

        probabilistic methods. The first ones are very effective when dealing with the convex   

        problems as opposed to usually slowly convergent stochastic methods,  

        e.g. most AI ones, especially for large optimization problems. However, efficiency of 

        the AI methods does not change much for non-convex problems, as opposed to the  

        deterministic ones. 

 

      - The objective of this whole research, therefore, is to develop means of essential    

        acceleration of the Evolutionary Algorithms, being one of the AI methods. Particular    

        attention is paid here to use of smoothing, step by step mesh refinement, and our   

        knowledge about estimated solution error, to essential  EA  acceleration. Several 

        introduced speed-up concepts are tested on various, carefully selected benchmark   

        problems. 



    Summary 
 

      - Preliminary results of executed tests are encouraging. For use of step by step mesh  

        refinement together with smoothing, and a’posteriori error analysis, the overall  

        speed-up factor about  150  times was reached so far. 

 

      - When well designed, the accelerated EA may provide solution much faster than  

        the standard EA algorithm. Moreover, as opposed to the standard approach such  

        solution may also be efficiently obtained for large optimization problems. 

 

      - Application of the accelerated EA was preliminarily examined for benchmark problems    

        like smoothing of beam deflections, and reconstruction of residual stresses based on  

        experimental data smoothing by means of the PBA. 
 

    Further research planned 
 

      - Continuation of various efforts oriented towards increasing the EA efficiency,    

        including testing new concepts, and combination of all types of acceleration considered   

        for their simultaneous use. 
 

      - Analysis of further benchmarks. 
 

      - Application to real engineering problems like residual stress analysis in railroad rails    

        and vehicle wheels, as well as to a wide class of experimental and/or numerical data    

        smoothing problems formulated as the PBA ones. 
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