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Abstract 

Hybrid MSV-MGARCH models, in particular the MSF-SBEKK specification, proved useful in multivariate 

modelling of returns on financial and commodity markets. Here we propose a natural hybrid generalisation of 

conditionally Student t MGARCH models. Our new hybrid EMSF-MGARCH specification is obtained by 

multiplying the MGARCH conditional covariance matrix Ht by a scalar random variable gt, which comes from a 

latent process with auto-regression parameter φ that, for φ = 0, leads to an inverted gamma distribution for gt and 

thus to the t-MGARCH case. If φ ≠ 0, the latent variables gt are dependent, so (in comparison to the t-MGARCH 

specification) in the new model of the observed time series we get an additional source of dependence and one 

more parameter. We apply the scalar BEKK specification as the basic MGARCH structure. Using the Bayesian 

approach, equipped with MCMC simulation techniques, we show how to estimate the new hybrid EMSF-

SBEKK model. We present an empirical example that serves to illustrate the hybrid extension of the t-SBEKK 

model and its usefulness, as well as to compare it to the MSF-SBEKK case. 
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1 Introduction 

In volatility modelling of financial time series, hybrid MSV-MGARCH models were 

introduced by Osiewalski and Pajor (2007, 2009) and Osiewalski and Osiewalski (2016) in 

order to use relatively simple model structures that exploit advantages of both model classes: 

flexibility of the MSV class (where volatility is modelled by latent stochastic processes) and 

relative simplicity of the MGARCH class. In their first attempt, Osiewalski and Pajor (2007) 

used only one latent process and the DCC covariance structure proposed by Engle (2002). 

However, Osiewalski (2009) and Osiewalski and Pajor (2009) suggested an even simpler 

model, also based on one latent process, but with the scalar BEKK covariance structure. The 

parsimonious hybrid MSF-SBEKK specification has been recognized in the literature (see 
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Teräsvirta, 2012; Amado and Teräsvirta, 2013; Carriero et al., 2016) and proved useful in 

multivariate modelling of returns on financial and commodity markets (see Pajor, 2010, 2014; 

Pajor and Osiewalski, 2012; Osiewalski and Osiewalski, 2012, 2013; Pajor and Wróblewska, 

2017). Any MSF-MGARCH model amounts to using a conditionally normal MGARCH 

process and multiplying its conditional covariance matrix Ht by such positive random variable 

gt that ln(gt) follows a Gaussian AR(1) process with auto-regression parameter φ. If φ = 0, 

then such MSF-MGARCH case reduces to the MGARCH process with the conditional 

distribution being a continuous mixture of multivariate normal distributions with covariance 

matrices gtHt and gt log-normally distributed.  

In this paper we propose a natural hybrid extension of very popular MGARCH models 

with the Student t conditional distribution. Our new models are obtained by multiplying Ht by 

random variable gt coming from such latent process (with auto-regression parameter φ) that, 

for φ = 0, gt has an inverted gamma distribution and leads to the t-MGARCH specification, 

where the conditional distribution can be represented as a continuous mixture of multivariate 

normal distributions with covariance matrices gtHt and an inverted gamma distribution of gt. 

If φ ≠ 0, the latent variables gt are dependent, so (in comparison to the t-MGARCH model) in 

the new model of the observed time series we get an additional source of dependence and one 

more parameter.  

In the next section the general form of a MSV-MGARCH model as well as its special 

MSF-MGARCH structure are presented, and the EMSF-MGARCH class is formally defined. 

In Section 3 it is shown how to estimate the new hybrid EMSF-SBEKK model using the 

Bayesian approach and MCMC simulation techniques. In Section 4 an empirical example is 

presented; it serves to illustrate the hybrid extension of the t-SBEKK model and its validity, 

as well as to compare it briefly to the previous MSF-SBEKK specification.  

 

2 Hybrid n-variate volatility specifications 

Assume there are n assets. We denote by rt = (rt1 … rtn) n-variate observations on their 

logarithmic return (or growth) rates, and we model them using the basic VAR(1) framework: 

 ttt rr   10 ;  t=1, ..., T; (1) 

where T is the length of the observed time series. The hybrid MSV-MGARCH model class for 

the disturbance term t is defined by the following equality: 

 
2/12/1

tttt GH  , (2) 

where: }{ t  is a strict n-variate white noise with unit covariance matrix, ),0(~}{ )(

n

n

t IiiD ; 
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Ht and Gt are square matrices of order n, symmetric and positive definite for each t; Ht is a 

non-constant function of the past of t and corresponds to the conditional covariance matrix of 

some MGARCH specification; Gt is a non-constant function of a (scalar or vector) stochastic 

latent process {gt}, which is non-trivial (i.e., constituted of variables gt dependent over time); 

see Osiewalski and Osiewalski (2016). Under (1) and (2), the conditional distribution of rt 

(given the past of rt and the current latent variable gt) is determined by the distribution of t ; 

it has mean vector  10 tt r  and covariance matrix  2/12/1 ' tttt GHG , which depends 

on both gt and the past of rt.  

Building upon an idea presented by Osiewalski and Osiewalski (2016), we define a new 

subclass of the MSV-MGARCH model class. This subclass corresponds to the Gaussian 

white noise }{ t  and positive-valued scalar latent processes {gt} such that Gt = gtIn and 

 ttt gg  lnlnln 1   ,    (3) 

where t  s  for all t, s  {1, ..., T}, 0< || <1 and {t} is a sequence of independent positive 

random variables with the same distribution belonging to a specific parametric family. The 

simplest MSV structure, called MSF and used by Osiewalski and Pajor (2009) to construct 

hybrid models with Gaussian }{ t , is based on the assumption that {ln t} is a Gaussian white 

noise with unknown variance σ
2
. In MSF-MGARCH hybrid models, (3) represents a two-

parameter family of stationary and causal Gaussian AR(1) processes. Now we extend this 

basic case by considering other latent processes (3), corresponding to different parametric 

distribution classes of t. We use the term “Extended MSF-MGARCH (EMSF-MGARCH) 

model” for all MSV-MGARCH models based on Gaussian }{ t  and distributions other than 

log-normal for t in (3). In EMSF-MGARCH cases {ln t} needs not be a white noise process.  

In the MSF-MGARCH and EMSF-MGARCH cases, the conditional distribution of rt 

(given its past and gt) is Normal with mean t and covariance matrix t = gtHt. In the MSF-

MGARCH model, due to properties of Gaussian autoregressive processes, the marginal 

distribution of gt is log-normal, so the distribution of rt given its past (only) is the scale 

mixture of N(t, gtHt) distributions with log-normal gt. The mixing distribution depends on , 

and obviously remains log-normal for =0; this value leads to the MGARCH model with a 

specific ellipsoidal conditional distribution (the log-normal scale mixture of normal 

distributions). In the EMSF-MGARCH model class, the distribution of rt given its past (only) 

is also the scale mixture of N(t, gtHt) distributions, but we are not able to derive the marginal 

distribution of gt, which obviously depends on . However, for =0 (the value excluded in the 
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definition of our new hybrid models) gt=t, so the distribution of gt is known by assumption. 

Since =0 corresponds to the MGARCH model with some ellipsoidal conditional distribution, 

i.e. the scale mixture of N(t, gtHt) distributions with gt distributed as t, we may view any 

EMSF-MGARCH specification as a natural hybrid extension of the MGARCH  model that is 

obtained for =0. In this paper we consider such EMSF-MGARCH extension of the popular 

MGARCH model with conditional Student t distribution. We focus on a particular, simple 

form of the MGARCH covariance matrix Ht, namely the scalar BEKK (SBEKK) form. It 

leads to the EMSF-SBEKK model based on an inverted gamma distribution of gt; this is our 

hybrid extension of the t-SBEKK model. 

 

3 Bayesian EMSF-SBEKK model and MCMC simulation of its posterior distribution 

Assume that t in (1) is conditionally Normal (given parameters and latent variables, jointly 

grouped in θ) with mean vector 0 and covariance matrix gtHt. The SBEKK form of Ht is as 

follows: 

   111 ')1(   tttt HAH  .  (4) 

The univariate latent process {gt} fulfils (3) with 1
t  gamma distributed with mean 1 and 

variance 2/ , i.e. )2/,2/(~}{ vviiIGt . 

In order to efficiently estimate our EMSF-SBEKK model, which is based on as many 

latent variables as the number of observations, we use the Bayesian approach equipped with 

MCMC simulation techniques. The Bayesian statistical model amounts to specifying the joint 

distribution of all observations, latent variables and “classical” parameters. The assumptions 

presented so far determine the conditional distribution of observations and latent variables 

given the parameters. Thus, it remains to formulate the marginal distribution of parameters 

(the prior or a priori distribution). We assume independence among almost all parameters and 

use the same prior distributions as Osiewalski and Pajor (2009) for the same parameters. The 

n(n+1) elements of  =( (vec Δ)) are are assumed a priori independent of other parameters, 

with the N(0, In(n+1)) prior. Matrix A is a free symmetric positive definite matrix of order n, 

with an inverted Wishart prior distribution (for A
 -1

: Wishart prior distribution with mean In), 

and β and γ are free scalar parameters, jointly uniformly distributed over the unit simplex. As 

regards initial conditions for Ht, we take H0 = h0 In and treat h0 > 0 as an additional parameter 

(a priori Exponentially distributed with mean 1).  has the uniform distribution over (-1, 1), 

for v we assume the Exponential distribution with mean 1/v truncated to (2, +).  
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We can write the full Bayesian model as 
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The posterior density function, proportional to (5), is highly dimensional and non-standard. 

Thus Bayesian analysis is performed on the basis of a MCMC sample from the posterior 

distribution, which is obtained using Gibbs algorithm, i.e. the sequential sampling from the 

conditional distributions obtained from (5): 
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Drawing from each conditional distribution above is done through Metropolis-Hastings steps. 

 

4 An empirical example 

In order to illustrate empirical validity of the EMSF–SBEKK model – in comparison to the 

pure GARCH, t-SBEKK specification – we use the same bivariate data sets as Osiewalski and 

Pajor (2009). The first data set consists of the official daily exchange rates of the National 
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Bank of Poland (NBP fixing rates) for the US dollar and German mark in the period 

1.02.1996 – 31.12.2001. The length of the modelled time series of their daily growth rates 

(logarithmic return rates) is 1482. The second data set consists of the daily quotations of the 

main index of the Warsaw Stock Exchange (WIG) and the S&P500 index of NYSE. We 

model 1727 logarithmic returns from the period 8.01.1999–1.02.2006. In the case of exchange 

rates, both series are highly non-Normal and they are quite strongly positively correlated. The 

other data set shows smaller deviations from Normality and much weaker correlation.  

    

Table 1. Posterior means (and standard deviations) of the parameters of the MSF–SBEKK 

and EMSF–SBEKK models for the exchange rates (T=1482). 

parameter MSF–SBEKK EMSF-SBEKK 

(v = 1/10) 

EMSF-SBEKK 

(v = 1/30) 

δ01 0.044  (0.009) 0.040 (0.010) 0.040 (0.010) 

δ02 -0.005  (0.010) -0.006 (0.010) -0.006 (0.010) 

δ11 -0.020  (0.025) -0.015 (0.025) -0.014 (0.025) 

δ12 -0.012  (0.026) -0.010 (0.026) -0.009 (0.026) 

δ21 -0.012  (0.021) -0.015 (0.021) -0.015 (0.021) 

δ22 -0.040  (0.025) -0.038 (0.025) -0.039 (0.025) 

a11 0.153  (0.029) 0.079 (0.010) 0.079 (0.010) 

a12 -0.053  (0.018) -0.024 (0.007) -0.024 (0.007) 

a22 0.174  (0.034) 0.089 (0.012) 0.089 (0.012) 

φ 0.411  (0.086) 0.302 (0.096) 0.304 (0.096) 

σ
2
 or ν 0.540  (0.070) 5.508 (0.573) 5.527 (0.575) 

β 0.084  (0.013) 0.068 (0.012) 0.068 (0.012) 

γ 0.878  (0.015) 0.869 (0.016) 0.869 (0.016) 

β + γ 0.962  (0.008) 0.937 (0.026) 0.937 (0.026) 

h0 0.053  (0.051) 0.038 (0.037) 0.039 (0.036) 

 

In Tables 1 and 2 the posterior means and standard deviations of the MSF–SBEKK and 

EMSF–SBEKK parameters are presented for the exchange rates and stock indices data, 

respectively; the results for the MSF–SBEKK case are taken from Osiewalski and Pajor 

(2009). It is important to note that the posterior distribution of , the latent process auto-

regression parameter, is further from zero in the MSF–SBEKK model for both data sets 

(especially for stock indices). It seems that the MSF–SBEKK model really needs the non-
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trivial Gaussian AR(1) latent process in order to describe the data, so that the case φ = 0, i.e. 

the SBEKK model with log-normal scale mixture as the conditional distribution, is clearly 

excluded. The question whether our EMSF–SBEKK model can be reduced to the t-SBEKK 

case cannot be answered so easily. For the exchange rates data, the posterior probability that 

 <0 is approximately 0.001 only and  = 0 is included in the highest posterior density (HPD) 

interval of probability content as high as 0.998. Thus the t-SBEKK model is inadequate. But 

for the stock data, the posterior probability that  < 0 is 0.061 for v=1/10 and 0.045 for 

v=1/30, and  = 0 is included in the HPD interval of probability content 0.863 or 0.949, 

depending on the prior hyper-parameter v. The t-SBEKK model cannot be rejected for the 

stock data and its empirical relevance is sensitive to the prior specification.  

 

Table 2. Posterior means (and standard deviations) of the parameters of the MSF–SBEKK 

models for the stock indices (T=1727). 

parameter MSF–SBEKK EMSF-SBEKK 

(v = 1/10) 

EMSF-SBEKK 

(v = 1/30) 

δ 01 0.072  (0.026) 0.067 (0.026) 0.066 (0.026) 

δ 02 0.028  (0.022) 0.026 (0.023) 0.026 (0.023) 

δ 11 0.015  (0.024) 0.011 (0.024) 0.011 (0.024) 

δ 12 0.012  (0.020) 0.009 (0.020) 0.010 (0.020) 

δ 21 0.302  (0.027) 0.297 (0.026) 0.297 (0.026) 

δ 22 -0.022  (0.026) -0.023 (0.026) -0.023 (0.025) 

a11 1.127  (0.267) 0.668 (0.141) 0.658 (0.141) 

a12 0.159  (0.104) 0.088 (0.070) 0.088 (0.071) 

a22 0.729  (0.176) 0.469 (0.097) 0.461 (0.098) 

φ 0.872  (0.156) 0.319 (0.220) 0.309 (0.209) 

σ
2
 or ν 0.036  (0.041) 14.607 (5.054) 14.110 (3.798) 

β 0.021  (0.006) 0.032 (0.006) 0.032 (0.006) 

γ 0.970  (0.007) 0.953 (0.008) 0.953 (0.008) 

β + γ 0.991  (0.003) 0.985 (0.005) 0.985 (0.005) 

h0 2.881  (1.026) 2.277 (0.812) 2.252 (0.807) 

 

The dependence of the marginal posterior distribution of  on v (the hyper-parameter of 

the prior of v), observed for the stock data, is intriguing. The parameters , v are independent 
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a priori and only weakly dependent a posteriori in the case of exchange rates; their bivariate 

posterior distribution is almost the same for both values of v (see Fig. 1). However, the joint 

posterior distribution of (, v) for the stock data, shown in Fig. 2, looks very different. It is 

bimodal, reveals a non-linear dependence between parameters and looks a bit different for 

v=1/10 and for v=1/30, with non-negligible second mode in the latter case. Note that the 

global mode corresponds to much lower values of the degrees of freedom and auto-regression 

parameter than the second mode. The larger  (the stronger dependence in the latent process), 

the higher v (the thinner tail of the conditional distribution of the latent variable). Thus it is 

intuitive that v=1/30, which gives high prior chances to thin tails (higher than v=1/10 gives), 

may lead to the so high second mode. These subtle issues would require comparing different 

Bayesian models formally, which is not easy at all.  

 

  

Fig. 1. The posterior distribution of (, v) in the EMSF-SBEKK model (exchange rates, 

T=1482; left panel: v = 1/10; right panel: v = 1/30). 

 

  

Fig. 2. The posterior distribution of (, v) in the EMSF-SBEKK model (stock indices, 

T=1727; left panel: v = 1/10; right panel: v = 1/30). 
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Note that the formal Bayesian model comparison (through Bayes factors and posterior 

odds) is computationally very difficult in our hybrid framework. The crucial issue is that of 

precisely calculating the numerical value (for the data at hand) of the marginal density of 

observations p(r1,..., rT), which is the integral of the density (5) with respect to its all other 

arguments (i.e., latent variables and parameters). In order to approximate p(r1,..., rT) within 

MCMC sampling from the posterior distribution, Osiewalski and Osiewalski (2013, 2016) 

used the harmonic mean estimator with a specific correction. Such approach does not have so 

good properties as the corrected arithmetic mean estimator (CAME) proposed by Pajor 

(2017). However, the use of CAME in dynamic models with latent processes is not 

numerically feasible yet, due to very high dimensions of the Monte Carlo simulation spaces. 

Thus, in this study we do not calculate the posterior model probabilities for the proposed 

EMSF-SBEKK model, its t-SBEKK limit case and the original MSF-SBEKK specification. 

The formal Bayesian comparison of alternative models is left for future research.  

The aim of this paper was to show how to construct (and estimate within the Bayesian 

approach) a hybrid EMSF-MGARCH generalisation of the t-MGARCH model, focusing on 

the simple SBEKK structure. The Bayesian analysis of our EMSF-SBEKK model relies on 

Gibbs sampling with Metropolis-Hastings steps. Our illustrative empirical example suggests 

that the EMSF-MGARCH specification (that serves to generalise the t-MGARCH model) can 

relatively easily accommodate heavy tails – through latent process based on inverted gamma 

disturbances – in comparison to the MSF-MGARCH model, based on log-normal distribution 

and requiring larger values of the latent process auto-regression parameter . 
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