

UML SUPPORTED DESIGN OF MECHATRONIC SYSTEM

Zbigniew Mrozek1, Tao Wang 2 and Minrui Fei 2

(1) Cracow University of Technology, PL 31-155, KRAKÓW, Poland
(2) Shanghai University,Post Code , 200072

Shanghai,China

ABSTRACT

Information transfer plays an important role in operation
of mechatronic system. This can be easily presented on
UML (Unified Modelling Language) diagrams. Author
believes that terminology and notation of visual
modelling with UML can be adopted as common
language for design of the mechatronic systems and as
documentation tool on every design phase.

INTRODUCTION

UML was introduced as language for modeling of the
information systems, but it can be used to describe all
elements of mechatronic system.

UML LANGUAGE

UML is derived from three other products: OMT (object
modelling technique) by James Rumbaugh, Booch
method by Grady Booch and OOSE (object oriented
software engineering) by Ivar Jacobson. The UML
language was improved many times until version UML
1.3 was accepted as proposal for standard in year 1999.
The current UML version specification is 1.4 and
proposals for version 2.0 are under discussion. UML
represents a collection of the best engineering practices
that have proven successful in the modelling of large and
complex systems. Many successful attempts have been
considered to extend the application of UML to areas
beyond informatics.

Any complex system can be presented by a set of
nearly independent views of a model. Single view is not
sufficient. Use case diagram and class diagram (there
are described later) are probably used in all UML
supported projects. The choice of what other diagrams
are created depend on how a problem is attacked(Figure
1). In addition to

• use case diagram
• class diagram

one can create any of behavioural diagrams:
• statechart diagram
• activity diagram
• interaction diagrams: sequence and

collaboration
and implementation diagrams:

• component diagram
• deployment diagram

Some CASE tools supporting UML design may offer
their own extensions and diagrams which are not
included in current UML specification (e.g. system
architecture diagram in Real Time Studio from Artisan
Software Tools),

There is no need to use all existing types of
behavioral diagrams in applications. That is, it is
sufficient to have a deep knowledge of a small subject of
carefully chosen diagrams. As Brugge [3] points out;
“You can model 80% of most problems by using about
20% UML”. It means that a UML module should present
only a part of carefully selected elements of the UML
language. In the author’s opinion, use case diagrams,
scenarios, class and object diagrams, two or three
behavioural diagrams (e.g. sequence and state),

USE CASES

The main tool used for requirements elicitation during
analysis phase are use cases and scenarios. Use case is
represented by an ellipse on use case diagram (figure 2).
It captures sub-system functionality as seen from the
point of view of end user or domain expert. It helps to
understand how the system should work. This is an
important job, as original problem description may be
incomplete and some requirements may conflict with
others. Requirements are imperfect and not always
understood. Once requirements are really understood,
the client may realizes they are wrong. Blaming the
client for a defective problem statement is not an
acceptable option.

zm
 5-th International Conference on System Simulation & Scientific Computing
 Shanghai, China, Nov 3-6, 2002, paper 04F008

Collection of use cases describes different
behaviour of the system and shows how it interacts with
external actors.

Actor is a human user, another system, sensor or
anything located outside of the actual system that will
initiates a use case and will interact with the system.
Actor is depicted as a simple icon of a man. Defining
actors is essential to set the border between the system
under development and its external environment.

An example of use case diagram for Robocop
football player robot is given below.

Figure 1 Use case diagram for football player robot
(robocop)

SCENARIO

Scenario is defined as set of messages (or description) in
natural language, describing chosen sequence of actor
and system interactions. It describes details of use case
functionality.

CLASS AND OBJECT DIAGRAM.

When use cases or scenarios are analysed, object
activities are described although classes are not defined
at all. This may be very strange to students with some

background knowledge in C++ or Java languages and
who, in general, accept that an object is an instance of
class. Here in visual programming using UML a class
may be defined and drawn later, as generalization of
chosen similar objects. A class diagram may contain
classes and objects. If there is no other class in such a
diagram, the diagram is named an object diagram.

There is no officially recognized methodology to
identify object and classes. Therefore, different
programmers may define a different set of classes and
objects for the same problem.

It is not a good idea to design a complete class or
object diagram when scenarios and use cases are ready.
This is because some changes in object hierarchy,
naming, methods and attributes may be inevitable, when
other diagrams are designed. This is true especially
when sequences or state diagrams are under preparation.
In general, when a good case tool supporting UML
programming is used, the class diagram is corrected
automatically when objects or class names, types,
methods, attributes or parameters are changed in other
diagrams.

BEHAVIORAL DIAGRAMS

There is no need to use all existing types of behavioural
diagrams in applications. That is, it is sufficient to have a
deep knowledge of a small subset of carefully chosen
diagrams. As Brugge [3] points out; “You can model
80% of most problems by using about 20% UML”. It
means that a UML module should present only a part of
carefully selected elements of the UML language. In the
author’s opinion, use case diagrams, scenarios, class and
object diagrams, two or three behavioural diagrams (e.g.
sequence and state), component and deployment
diagrams, OCL (Object Constraint Language) should be
considered when designing a UML module.

SEQUENCE DIAGRAM

Sequence diagram is graphical model of scenario with
emphasis on interaction between actor and system and
on communication between objects inside the system.
The diagram shows what objects do to implement a
scenario. During preparation of diagrams one can verify
requirements specification and scenarios against
omissions and inconsistencies. Similarly, one can verify
existing classes and objects. Missing classes and objects
should be defined at this stage. Methods and attributes
defined here should be identified automatically by the

CASE package and used immediately to update existing
classes and objects.

STATE DIAGRAM

If an object's behavior is more complicated, a sequence
diagram is not sufficient and a state-chart diagram
should be designed. Transition can be event
triggered or time triggered

ACTIVITY DIAGRAM

Represents data and/or control flow as flowchart. It
can be multi-threaded to initiate parallel paths. Good
way to look at system-level behaviour and emphasize
concurrent operations.

CASE TOOLS

When building diagrams, one will verify if already
defined objects are useful for tasks and services
described with the new state or sequence diagrams. He
has to decide what methods (its name, type and
parameters) and attributes (its name and type) are needed.
Most CASE tools (Rational; Rose [8] and Real Time
Studio [9] were used by authors) have a database with
data of objects defined within a project. In case of any
inconsistency, user is immediately alerted to correct the
error. This speeds up design and helps to avoid many
errors

BRAINSTORMING

Brainstorming is used to identify possible solutions to
problems and potential opportunities for improvements.
This technique is used for tapping creative thinking of a
team to generate and clarify a list of ideas, problems and
issues. We use brainstorming to find all use cases and
actors necessary to build a use case diagram.
Brainstorming is useful to identify states and transitions
for state diagram. There are two phases in the
brainstorming procedure.

During the generation phase the purpose (target)
of the brainstorming session is clearly stated, each team
member takes a turn in a sequence, stating a single idea
where possible, new ideas are build on others ideas, all
ideas are recorded and should be seen by all the
participants (using whiteboard or overhead is
recommended). At this stage, ideas are neither criticized
nor discussed. the process continues until no more ideas
are generated.

During the clarification phase all ideas are
reviewed to make sure that each person understands
them all. Evaluation of ideas will occur after the
brainstorm session is completed.

CONCLUSIONS

The UML has the advantage that it reveals gaps and
inconsistencies in the requirement’s specification at
earlier stages of design, as well as making it easy to
understand and modify visual modelling diagrams.
Unification and precision of notation is important for
large and interdisciplinary projects. User may transfer
already defined classes and other elements between
different diagrams and projects to reuse them. This
accelerates work on the project.

Using commercially available specialised CAD tools and
CASE packages, visual UML programming may greatly
improve productivity of a software design team by
cutting down development time and improving final
product quality (in accordance with ISO 9000 standards).

ACKNOWLEDGEMENTS:

Authors wish to express their gratitude to ARTiSAN
Software Tools, Inc (GB); Rational Software
Corporation (USA) and Premium Technology Sp zoo
(Poland) for free evaluation license for following

Figure 2 State diagram for goal keeper robot

software: Real-time Studio, Rational Rose Suite and
Rational Rose RT.

REFERENCES

(1) Booch, G. Rumbaugh, J. Jacobson I The Unified

Modelling Language User Guide, Addison
Wesley, 1999

(2) Bruegge B, Dutoit A, Object-Oriented Software
Engineering: Conquering Complex and
Changing Systems, Prentice-Hall, 1999.

(3) Kobryn Cris, UML 2001 A Standardization
Odyssey, Communications of the ACM
Vol.42,No.10, pp.28-37, October 1999.

(4) Mrozek Z, UML as integration tool for design of
the mechatronic system, in Second Workshop
on Robot Motion and Control, pp 189-194, ed.
Kozlowski K, Galicki M, Tchoń K, Oct 18-20,
2001, Bukowy Dworek, Poland.

(5) Mrozek B,. Mrozek Z, MATLAB 6, poradnik
użytkownika, ISBN 83-7101-449-X, PLJ
Warszawa 2001.

(6) Mrozek Z, Methodology of using UML in
mechatronic design (in Polish), pp.25-28,
Pomiary Automatyka Kontrola 1, 2002.

(7) OMG Unified Modeling Language Specification
(draft), Version 1.4, February 2001. and other
OMG (Object Management Group) standards,
http://www.omg.org:

(8) Rational Rose Suite, Rational Rose RT and other
software from Rational Software Corporation.

(9) Real-time Studio, ARTiSAN Software Tools, Inc.
July 2001.

(10) Uhl T, Bojko T, Mrozek Z, Szwabowski W,
Rapid prototyping of mechatronic systems,
Journal of Theoretical and Applied Mechanics,
pp.655-668, vol.38.3, 2000

(11) Uhl T, Mrozek Z, Petko M Rapid control
prototyping for flexible arm, Preprints of 1-st
IFAC Conference on Mechatronic Systems, vol
II, pp 489-494, Darmstadt, September 18-20,
2000.

(12) Wei-Min Shen et al, Building Integrated Mobile
Robots for Soccer Competition, Proc. IEEE
Int. Conf. on Robotics& Automation, pp.2615-
2618, Leuven, Belgium May 1998

