
Tadeusz Sozański. The Mathematics of Exchange Networks.
 Part I. Chapter 1. Preprint, 2011

Part I

STRUCTURAL MODELS

Part I of this book begins from the chapter  that deals with  the understanding of
the concept of “structure” in mathematics and the social sciences.  Although the
worlds studied by mathematics and empirical sciences seem to be worlds apart, one
can bridge the ontological gap between them by building  formalized empirical
theories based on  representing empirical systems by sets endowed with structures of
various types. When such a representation is found, structural properties – primarily
defined for mathematical objects of a given category as properties preserved by
isomorphisms – can  be ascribed to empirical systems  via their mathematical models.
For example, a social group can be represented by a directed graph G=(N,R) where
N, or the set of points of G, stands for the set of group members, and R  is a binary
relation in N, obtained, for instance, by asking each member of N to name his or her
“friends” in N.

What are the benefits of such a representation? Once the graph model ignores the
content of the modeled empirical relation, the substantive nature of dyadic friendship
ties remains unexplicated. However,  by representing a “social relationship” as a
“relation” – in the mathematical  meaning of the term – we gain a formal language,
which enables us to depict the group structure more rigorously and to state hypotheses
about it  with the use of  structural variables. The knowledge of theorems about
graphs is no less important, as it sheds light on some empirical findings concerning
social ties. Consider a hypothesis which states that men have on  average more sexual
partners than women. Such a claim  found support (see Faust 1993) in a survey in
which a  representative sample of  the members of a closed community was
interviewed about their heterosexual contacts with other members of that community.
However, in any population in which potentially sexually active men and women are
equal in number, the mean number of female sexual  partners of a man equals the
mean number of male sexual partners of a woman. This statement,  for its informal
wording,  might seem  an empirical hypothesis. It is, in fact, a mathematical theorem.
Anyone who knows relevant terms (degree of a point, bipartite graph) will be able to
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correctly explain the inequality of the two sample means by pointing to the fact that
people too often lie when asked about the number of their sexual partners.

Since the appearance of the interdisciplinary perspective known as Social Network
Analysis (Wasserman and Faust 1994) the number of researchers in the social and
behavioral sciences who are familiar with graph theory language, algorithms and
theorems has been systematically growing.

“One attractive feature of digraph theory for the nonmathematician is its relatively self-

contained nature. The mathematical training acquired by most social scientists is

sufficient for understanding the contents of this book, although some informal

knowledge of logic, a facility in abstract thinking, and that mysterious quality known

as ‘mathematical maturity’ will make the task easier.”

Let me redirect these remarks, quoted from the preface to Harary, Norman, and
Cartwright's Structural Models (1965), to all who start reading my book,  another one
of the kind. Like the cited classical work, it deals mainly with graph-theoretic
structural models. A directed graph, defined as a relational system (N,R) with one
relation, is an abstract mathematical object. It can be drawn –  hence the name
“graph” – yet it should not be identified with none of its many geometric
representations, or sociograms, to use a more familiar term. Let us remark  that a
visual display of a digraph can also be construed as a structured mathematical object,
yet the fact that some structural properties can be “seen” is not in itself an argument
for the superiority of  visible (“graphical”) over invisible structures.

Chapter 1 owes its length to introductory reflections on the properties of scientific
knowledge and my involvement with “foundational” problems of  sociology. My
principal aim, however, is to show you in this chapter the gist of  “structural
approach” in mathematics and examine its implications for “structural modeling” in
the social sciences. In modern mathematics, “structure” is a generic term that
encompasses in its scope many particular “species of structure” such as binary
relations, algebraic operations, topological structures, and many others. A
metatheoretical analysis of mathematical and sociological “structuralism” will help
you see graphs in a broader conceptual framework in which “relation” is no longer
a synonym of  “structure” but means a special kind of  structure. 

Chapter 2 begins from a formal analysis of actions and transactions – the most
elementary events that occur both in  dyadic exchange systems (called “exchange
relations” by Emerson) and larger systems where at least one actor has more than one
potential transaction partner. Following a discussion of few formal approaches to
dyadic interaction with focus on the Nash bargaining model, we present the basic
terminology of graph theory and few theorems to be used in Part II. The aim of  the
last section of Chapter 2 is to define a network exchange system (exchange network,
for short) as a complex mathematical object obtained by endowing a transaction
opportunity graph (a graph whose lines specify who can exchange with whom) with
a network structure (an assignment of profit pools to graph lines) and exchange
regime – a structure that makes bilateral transaction opportunities interdependent. A
transaction between two actors will be construed as a division of the profit pool
assigned to the line connecting the actors'  positions.



Chapter 1

Structural Mathematical Sociology

1.1. Basics of the methodology of the basic sciences

1.1.1. Chapter 1 of this book opens with a  lengthy metatheoretical overture whose
themes come from my earlier papers (Sozański 1995b, 1998, 2002; in Polish). To
explain what is meant by structural mathematical sociology, I need to discuss first
how mathematics, which is a formal science, is related to basic empirical sciences,
in particular, to exact sciences. Every basic science, no matter formal or empirical,
natural or social, “is oriented to the production and evaluation of knowledge claims”
where the term  knowledge claim  is referred to any statement which “can be accepted
or rejected on the basis of some criterion of truth.” (Cohen 1989: 52–53).

The methodology of the basic sciences deals with epistemic criteria for evaluating
solutions to scientific problems. In every science, the range of problems considered
tractable is determined by one or more  paradigms,  a  paradigm being defined
roughly as  a set of guidelines, accepted by the academic community,  on what  and
how can be studied in a given scientific discipline or subdiscipline.

What are distinguishing features of science as a special kind of knowledge? To put
in another way, what ideals or standards guide the production of this kind of
knowledge? The answer is that scientific knowledge is expected to be: 

C intersubjectively communicable;

C methodically produced and validated;

C systematized;

C consistent;

C intersubjectively provable or testable;

C as certain as possible;

C rich in information;

C universal;

C general;

C precise and accurate;

C parsimonious and simple;

C abstract;

C conditional;

C cumulative.

Most of these characteristics were also included by Markovsky (1997b) in his list
of criteria for evaluating scientific theories. The discussion given below will be a bit
more technical than his, as I am going to combine metatheoretical considerations with
a presentation of few elementary mathematical terms to be used later in this book.

1.1.2. Intersubjective communicability, placed first on the list, is being achieved
in each discipline through codifying its language. That is to say, there must be
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established certain clear, objective, workable criteria upon which meaningful
statements can be distinguished from those to be considered meaningless.
Codification of scientific discourse inevitably leads to supplanting natural language
by artificial formal languages where complex expressions are built from simpler ones
by applying to them certain explicitly stated rules so that meaningful statements are
easily recognized from their syntactic structure. Formalization of the syntax (relations
within a system of signs) is a necessary step preceding the codification of two other
aspects (distinguished by Morris in his Foundations of the Theory of Signs, 1938) of
any language, semantics (relations between linguistic expressions and the objects in
the “world” to which they refer) and pragmatics (relations between a language and
its users).

1.1.3. Scientific knowledge has to be produced methodically, even if it ultimately
grows out of unplanned discoveries of new facts or new conceptual representations
of known facts. Methods are prescriptions on how to perform various activities at all
stages of the research process, first of all, at its last and most important stage when
knowledge claims are validated upon “some criteria of truth.” In the formal sciences,
a knowledge claim is accepted if and only if it can be deduced from already accepted
claims by means of the logical rules of inference. The deductive method is also used
in the empirical sciences along with empirical testing (in particular, experimental
method). This second way of validating knowledge claims is peculiar to these
sciences. By saying that scientific knowledge must be produced methodically, we also
mean that evidence needed to test a hypothesis must be collected with the use of
intersubjectively controllable data generation procedures.

1.1.4. Science differs from the common sense knowledge, in particular, with the
degree of systematization, which pertains both to terms and propositions, two basic
components of any knowledge. Terms are names of things, properties, relations,
functions, and other constructs studied in a given field.  Propositions (sentences), as
formed with the use of terms, constitute the higher level of the language. What is even
more important, they are conceived of as statements which can be true or false in a
given domain in which the terms occurring in them are semantically interpreted.

Collections of terms and propositions should be structured so as to form
terminologies and theories. To develop a terminology, one has to point out primitive
terms, or those terms that must remain undefined so that they could serve as a basis
for defining other terms. To narrow down the range of admissible interpretations of
primitive terms, one must accept certain meaning postulates, or propositions in which
these terms jointly occur.

To explain and illustrate metatheoretical concepts, we construct a simple formal
language suitable for the study of sex and kinship. Let E and P be two primitive
constant relational terms. Elementary propositional formulas or conditions containing
these terms will have the form xEy, xPy to be read respectively, as “x is of the same
sex as y,” “x is a parent of y.” Letters x, y which appear in these expressions are called
individual logical variables. If a and b denote two concrete elements of a fixed
domain, then the statement aEb (“a is of the same sex as b”) can be true or false. The
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logical value of the statement xEy is not determined since x and y represent
unspecified elements of that domain.

To find out if the proposition aEb is true or false in a domain whose elements are
human beings, one must identify two persons named a and b and check if they are of
the same sex. To verify that the proposition aEb w ¬(aEb) (“a is of the same sex as
b or a is not of the same sex as b”) is true, one does not need to examine a or b nor
even interpret the language in any domain. The proposition in question is a tautology,
which means, by definition, that it remains true in every domain solely by virtue of
its syntactic form, given in this case as p w ¬p where p stands for any proposition and
symbols w  and ¬ denote disjunction and negation. The other familiar logical
connectives, used as nonspecific terms in any scientific discipline,  are conjunction
(v), implication (Y), and logical equivalence (]). Since too formal style often makes
it difficult to grasp the logical meaning of a statement, I will almost always use
common English words instead of special symbols (p or q, not p, p and q, if p then q,
p if and only if q, p iff q, for short).

The logical value (truth or falsity, symbolically, 1 or 0) of a compound proposition
formed with the use of logical connectives is uniquely determined by the logical
values of its components and appropriate truth-functions. The truth-functions that
correspond to basic logical connectives are defined by the formulas: ¬1=0, ¬0=1,
1w1=1w0=0w1=1, 1v1=1, 1v0=0v1=0v0=0, 1Y1=0Y1=0Y0=1, 1Y0=0,
1]1=0]0=1, 1]0=0]1=0. 

A propositional formula containing logical variables can be converted into a
proposition by replacing some free variables with constants and/or binding other free
variables with the universal or existential quantifier, as shown in the following
examples: aPb (“a is a parent of b”), �x(xPa) (“there exists an x such that x is a parent
of a”), �x�y(yPx) (“every person has a parent”), �z�x(zPx) (“there exists a person
who is a parent of every person”).

Ludwig Wittgenstein said that (Tractatus logico-philosophicus, 4.116) “What can
be said at all can be said clearly.” The language of science is being made clear, first
of all, through explicit and codified use of logical variables and quantifiers. What can
be said clearly about sex and kinship? Let us begin from stating the meaning
postulates which say that E is an equivalence relation (E is reflexive, symmetric and
transitive) and there are at most two sex categories.

P1: �x(xEx) (reflexivity)

P2: �x�y(xEy Y yEx) (symmetry)

P3: �x�y�z(xEy v yEz Y yEz) (transitivity)

P4: �x�y�z(¬(xEy) v ¬(xEz) Y yEz)

To characterize the parenthood relation, we state the following postulate of strict
antisymmetry

P5: �x�y(xPy Y ¬(yPx))

which reads “for all x and y, if x is a parent of y, then y is not a parent of x.” Given P
as a primitive term, one can define a number of kinship relations, in particular, the
childhood (P ) and grandparenthood (P ) relations.-1 2
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D1: xP y ](df) yPx-1

D2: xP y ](df) �z(xPz v zPy)2

Definitions D1 and D2 fall under two common patterns of constructing new relations
from those already available in a given language. P  is the inverse of P and P , which-1 2

is short for PP, is the composition of P with P.
Note that definitions can't be true or false since they are not propositions. They are

rules that allow us to replace the defined expression (definiendum) with the defining
expression (definiens) in any place where the latter is found. To any rule of the kind
there corresponds a proposition (e.g., �x�y(xP y]yPx) is obtained from D1) which-1

is true under any interpretation given to P, being therefore a tautology in any language
that contains the respective definitional convention.

If the meaning of sex and kinship were to depend solely on postulates P1–P5, the
two relational concepts would be bound together only through their common domain
of reference. To establish a more “intimate” relationship between the two primitive
terms, we propose the following additional postulate

P6: �x�y�z(xPz v yPz v x�y Y ¬(xEy))

which reads informally: If a person (z) has two different parents (x,y), then they can't
be of the same sex. Notice that postulate P6 contains a statement  x�y, short for
¬(x=y). It is usually tacitly assumed of any logical language to contain identity as a
nonspecific relational term satisfying the meaning postulates of an equivalence
relation (i.e. �x(x=x); �x�y((x=y)Y(y=x)); �x�y�z((x=y)v(y=z)Y(x=z)). Unlike
specific relational terms, identity is always interpreted in a standard way as the binary
relation that holds only between identical elements.

While the terms which appear in the meaning postulates provide the foundation
for building up multi-tiered terminology, the postulates themselves play the role of
assumptions from which more propositions can be deduced. To give an example,
consider the following theorem asserting that every person has no more than two
parents.

C: �x�y�z�u(xPu v yPu v zPu Y x=y w x=z w y=z)

Proof. Suppose that it is not the case that C. Then, there exist a,b,c,d such that
aPd, bPd, cPd, and a�b, a�c, b�c. Since aPd, bPd, and a�b, we conclude that ¬(aEb)
by P6. Similarly, we get ¬(aEc) and ¬(bEc). Now we use P4 to derive bEc from
¬(aEb) and ¬(aEc). Thus, we arrive at a contradiction (¬(bEc), bEc), which completes
the proof.

The above proof of C meets the standards of precision required in mathematics.
At the cost of length, it could be given an even more formalized shape so as to satisfy
the conditions required of a proof in logic. While every formal language has rules of
formation that determine the set of all well-formed expressions, logical languages are
also endowed with rules of inference, or the rules that are used to derive or infer some
propositions from other propositions. To give a familiar example, consider the rule
known as modus ponens. It can be stated in the metalanguage as pYq, p | q where p
and q denote any two propositions and the symbol | is to inform that pYq and p are
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input to the rule. Proposition q, or the rule's output called the conclusion, is said to
follow from propositions pYq and p, or the premises of a reasoning formally described
by means of a given rule.

Although inference is a syntactic concept, any valid inference rule has the
following semantic property: If the premises are true in a domain, the conclusion is
true as well in that domain. The modus ponens rule satisfies this fundamental
requirement because the formula ((pYq)vp)Yq is a tautology of the propositional
calculus, that is, the logical value of the formula equals 1 for any pair of values
assigned to p and q. Finally, let us remark that the rules of inference are related to the
pragmatic concept of proposition acceptance via the following principle: Anyone
who accepts the premises must also accept the conclusion derived from them.

Let p be a proposition and Z be a fixed set of propositions stated in a formal
language of the kind we have been discussing. A proof (the term demonstration is
often used synonymously) of p from Z is defined as a finite sequence of propositions

1 n n i ip ,…,p  such that p =p and any p  meets at least one of three conditions: (1) p  is in

i i iZ; (2) p  is a tautology; (3) p  is derived from some propositions preceding  p  in the
sequence by means of an inference rule. The elements of Z are called assumptions.

To prove a hypothesis (p)  under a given set  of assumptions (Z) is often a difficult
task requiring  special skills and creative thinking. To make this task easier, logic has
worked out some standard tools, in particular, the so called “deduction theorem” and
the method known as “indirect proof” or reductio ad absurdum. Let Cn(Z) denote the
set of consequences of Z, or the set of all propositions having proofs from Z. The
deduction theorem asserts that pYq0Cn(Z) if and only if q0Cn(Zc{p}). In other
words, if one has to prove an implication pYq, one can derive q from the set of
assumptions extended by p. We assume that the symbols 0 (being an element of a set)
and c (union of sets) which  have just been used to state the deduction theorem are
known to the reader along with few other basic terms of set theory.

When it's not clear how to derive p from Z, one can try to deduce two
contradictory propositions from the assumptions and the negation of p. Formally, a
proof of p by reductio ad absurdum is completed as soon as one finds a q such that
q0Cn(Zc{¬p}) and ¬q0Cn(Zc{¬p}). The demonstration given above is an example
of an indirect proof. To prove C, we needed only postulates P4 and P6 as
assumptions. Thus, C0Cn({P4,P6}). If an indirect proof of p is available, then there
also exists an ordinary proof of p from Z.

To construct the direct proof of p, notice that the deduction theorem implies that

¬pYq0Cn(Z) and ¬pY¬q0Cn(Z). Let us join the proofs of ¬pYq and ¬pY¬q from Z

into one sequence of propositions and append at the end the tautology

(rYs)Y((rYt)Y(rY(svt))) in which r, s, and t have been replaced, respectively, with ¬p,

q, and ¬q. By applying twice the modus ponens rule we derive the proposition

¬pYqv¬q. We append in turn the tautology (¬pYqv¬q)Yp, and apply  the same rule

once again to obtain p, which completes the proof of p from Z.

Let us go back to explaining the systematization of scientific knowledge. In a weaker
sense, it means grouping knowledge claims into blocks united each by the same
subject matter, things, certain properties or relationships studied in a given discipline
or subdiscipline. Such a substantive systematization is usually a prelude to deductive
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systematization, or constructing theories. A collection T of propositions concerning
a fixed domain and containing the same set of terms is called a theory if the language
in which elements of T are stated is endowed with inference rules and Cn(T)dT. That
is, propositions which can be deduced from some propositions in T are in T as well.
Then T=Cn(T) because TdCn(T) (any p in T has a one-line proof made up of p).
Clearly, any T such that T�Cn(T) can be extended to a theory T'=Cn(T) (T'=Cn(T'),
that is, Cn(Cn(T))=Cn(T)). Therefore, the deductive systematization does matter in
science inasmuch as it takes the form of axiomatization, which amounts to

0representing a given theory T as the set Cn(T ) of consequences of a smaller, if

0possible finite set T   of propositions called the axioms of T. Mathematical theories
are usually constructed by choosing in advance few propositions to play the role of
axioms and to serve at the same time as meaning postulates for primitive terms. For
example, a formal theory of sex and kinship is obtained as Cn({P1,…, P6}).

1.1.5. Contradictory hypotheses may coexist in science, yet among the
propositions accepted in a given discipline there should never be two sentences such
that one of them is the negation of the other. Consistency, defined by this requirement,
is the most fundamental condition that any jointly accepted collection of knowledge
claims must satisfy. In particular, every scientific theory should be consistent. If a
theory T is not consistent, then it contains p and ¬p, for some proposition p, and hence
it contains pv¬p as well. Like every theory, T  includes all tautologies, in particular,
(pv¬p)Yq, which implies that every q is in T. Thus, any inconsistent theory coincides
with the set of all propositions which can be stated in a given formal language. Such
a theory has no descriptive value because there is no possible world in which both p
and ¬p are true. Any theory whose all propositions are true in every possible world
is substantively useless as well because tautologies do not convey in themselves any
information on any world whatsoever. Their role in every formal language is only to
enable logical inference.

In order to prove that an axiomatic theory is not tautological,  in other words, that
it is not part of the logical calculus, one needs to show that at least one of its axioms
is false under some semantic interpretation of the theory's language. The formal
theory of sex and kinship is not tautological because one can imagine a society where
parents may be of the same sex. Unfortunately, one need not  resort to imagination as
there already exist such societies.

 Similarly, to make sure that an axiomatic theory is consistent, it suffices to
construct its model, which amounts to pointing out a domain and an interpretation of
the theory's primitive terms under which all axioms are true. To demonstrate the
consistency of our illustrative theory, assume that variables x,y,z,… run over the set
{t,m,d} made up of three distinct persons, say, me (t), my wife (m), and our daughter
(d). Clearly, axioms P1,…,P6 are true if P and E are the names of two sets of ordered
pairs: {(t,d),(m,d)} and {(t,t),(m,m),(d,d),(m,d),(d,m)}, respectively. In general, every
model of a theory with two primitive relational terms is a relational system of the
form (X,P,E) where X is a nonempty set and P and E denote two binary relations in
X. Any relation in a set X is also a set – a set constructed from elements of X. The
construction is based on the  theory that deals with sets and their elements, the two
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notions being tied with each other by the axiom of extension: Two sets are identical
if and only if they have the same elements, symbolically, X=Y ] �x(x0X]x0Y)

While finite sets like {t,m,d} can be defined by listing its elements “by name,” any
set whose elements are not known in advance must be construed as a semantic
counterpart of some quality (predicate). Since the claim that every intuitively
meaningful property can be represented by a set must be rejected as leading to
contradiction, some restrictions on defining sets are imposed within traditional
(Zermelo-Fraenkel) axiomatic set theory. The ontology of mathematics can also be
developed so as to admit of the existence of macro-sets, called  classes,  which consist
of sets and behave like sets in many respects, but may not be identified with sets. 

Fortunately, to construct models of simple formal theories, one doesn't have to be
familiar with the foundations of mathematics. What every mathematician must know
are just few uncontroversial axioms which guarantee the existence of  the following
sets: the empty set i,  the (unordered) pair {a,b} made up of any objects  a and b, the
union of a family of sets (the name “family” is usually referred to a set whose
elements are known to be complex entities, say, they are sets), the power set -(X) (the
family of all subsets of a set X), and the set {x0X: v(x)} of those elements of a set X
which satisfy a condition v stated in any logical language with individual variables
representing elements of X.

These elementary axioms entail the existence of the set X×Y of all ordered pairs
of the form (x,y) where x is an element of a set X and y is an element of a set Y. X×Y
is termed the Cartesian product of X and Y; its subsets are called relations between
X and Y. Binary relations in X are subsets of X×X, in other words, they are elements
of -(X×X). We say that a relation FdX×Y is a mapping of X into Y, symbolically,
F:X6Y, if, for any x0X, there exists a y0Y such that (x,y)0F, and, for any y'0Y, (x,y')0F
implies that y'=y. The element of Y that is assigned to x by F is written F(x) as being
uniquely determined by x and F; it is called the value of F for x or the image of x
under F. For any AdX, the image of A under F is defined as the set F(A)={y0Y:
y=F(x), for some x0X}. If F(X)=Y, that is, every element of Y is the image of an
element of X,  we say that F is a surjective mapping or a mapping of X onto Y. We say
that F is injective or one-to-one (1–1), if  x�x' implies that F(x)�F(x'), for any x,x'0X.
If F is both surjective and injective, it is termed bijective. Then, the inverse relation
F  ((y,x)0F  if and only if (x,y)0F) is a 1–1  mapping of Y onto X.-1 -1

For any relation FdX×Y and any relation GdY×Z  the composition GBF (noted also
GF) of G with F is defined as the subset of X×Z made up of ordered pairs (x,z) such
that, for some  y0Y, (x,y)0F and (y,z)0G. If F and G are mappings, then the
composition of G with F is a mapping of X into Z: the value of  GBF for any x0X

X Xequals G(F(x)). If F is a 1–1 mapping of X onto Y, then F BF=I  where I  is the-1

Xidentity mapping of X onto X: I (x)=x, for any x0X. 
No science can do without using set-theoretical notions to represent what it studies

no matter whether it deals with tangible or abstract entities. Wójcicki (1979: 137) is
right to say that “all sentences, including those of the conversational language, have
some mathematical structure (they can be interpreted in a set-theoretical manner) and
consequently, all theories can be viewed as mathematical, although perhaps
completely trivial ones.” 
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Some philosophers believe that mathematics provides no nontautological
knowledge of any reality lying outside the symbolic language because mathematical
theorems are merely pieces of formal text derived from other pieces according to the
rules of a logical “language game.” Contrary to this claim, most mathematicians have
always developed their theories with the aim to discover nontrivial facts about
numerical or other more abstract domains.

1.1.6. The set ù={0,1,…} of natural numbers is certainly the most familiar
mathematical domain. Counting things is the simplest use of mathematics both in
science and everyday life. Arithmetic, or the axiomatic theory of natural numbers,
owes its methodological importance for all mathematics to the axiom of mathematical
induction. To prove that all terms of a countable sequence satisfy some condition, one
needs to make sure that it holds for the first term and to show that whenever the nth
term meets the condition, then so does the (n+1)th term.

Natural numbers are also used to endow any logical language with indexed

nvariables x , n=0,1,… as well as to define terms dependent  on  n, such as nth power
of a fixed binary relation. Let P =I where I is the identity relation (xIy ](df) x=y). Let0

P  stand for the composition of P with P  (that is, xP y  ](df) �z(xPz and zP y).i+1 i i+1 i

Thus, if  P  is defined, then P  is defined as well. The axiom of mathematicali i+1

induction implies that P  is defined for every n$0. For n$2, P  can also be definedn n

as follows:

1 n!1 1 n!1D3: xP y  ](df) �x …�x  (xPx …x Py).n

D2, or the definition of the grandparenthood relation, is a special case of D3. The
ancestorhood relation will be defined as the transitive extension of P.

D4: xP y ](df) �n$1(xP y)tr n

If arithmetic is to serve as a basis for other formal theories, it should be consistent
itself. Unfortunately, some 80 years ago Gödel proved the impossibility to derive the
consistency of arithmetic from its axioms alone. To prove that a formal theory is
consistent by constructing its model, one must assume the consistency of the theory
that is used to justify the construction. Regardless of whether arithmetic or the theory
of sets  is construed as an independent  theory or as part of the more fundamental
theory of sets, the consistency of the latter theory, or the one which provides means
for constructing models of other theories, is no less problematic. Although these
discoveries have shaken the confidence in mathematics as a science with particularly
firm foundations, I believe with  Bourbaki (1968: 13) that “the essential parts of this
majestic edifice will never collapse as a result of the sudden appearance of a
contradiction; but we cannot pretend that this opinion rests on anything more than
experience.” 

1.1.7. Since “experience” matters not only in the empirical sciences, it would be
unreasonable to expect from any science to arrive at absolute nontautological truths.
We require from scientific knowledge to be intersubjectively provable or testable,
but we have to put up with the fact that all  proofs  and  tests are  relative. In the
formal sciences, a hypothesis is accepted as a theorem if there exists its demonstration
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based on explicit specific axioms whose consistency is usually justified by invoking
a more fundamental theory. The empirical sciences use the deductive method as well
– as a way to derive consequences from already accepted theoretical propositions and
as part of testing procedures that are peculiar to these sciences, being their main
method of evaluating knowledge claims.

To test an empirical theory, one must first identify a number of situations that
meet the theory's scope conditions and admit of gathering evidence indispensable for
validating theoretical predictions. The scope conditions (see Cohen 1989: 83;  Foschi
1997) determine the range of systems to which the theory applies; they can also
specify special system states or some additional circumstances in which theoretically
predicted events should occur. Since empirical systems that meet all scope conditions
are seldom found in nature, science can't do without constructing fully or partially
artificial systems. Created by the researcher, they are easier to study than natural
systems, but are  no less real than the latter. 

For any empirical system satisfying a theory's scope conditions,  one must state
more or less specific hypotheses concerning its predicted “behavior” and derive them
from the theory, supplemented, if necessary, with auxiliary assumptions, for example,
those concerning representing theoretical variables by operational ones. To test
theory-based predictions and thus the theory itself, one must register actual behavior
of the system under study, which basically amounts to recording values of some
variables (we define this term in the next section). If  the system's observed behavior
agrees with the predicted behavior  within the margin of error (acceptable in a given
discipline), then  the theory is said to have been corroborated by the evidence
generated to test it.

If observation of a “natural” course of events can't provide sufficiently rich and
unambiguous evidence,  one has to create an artificial setting in order to give nature
an opportunity to speak in a more extensive or more articulate way. In either case, the
researcher must devise a procedure to generate evidence interpretable in the context
of his theory, or a procedure for translating the cues emitted by the external world into
meaningful data. In an ideal world, such a procedure would be dictated by the theory
alone. In the real world, it should be designed so as to minimize “error” or “noise”
occurring  also in experimental systems, as they are made from the material found in
the real world and are never completely protected against the influence of external
environment.

Given an adequate research design and reliable measurement techniques, the
outcome of a test should depend on whether the theory undergoing verification
correctly depicts regularities operating within a well defined category of things or
events. An empirical theory must be supported by the evidence in a number of tests
to get incorporated into the body of established knowledge in a given discipline.
Theoretical propositions which have been accepted and have few other desirable
properties (universality and generality being considered most important) are called
laws. Laws are distinguished from hypotheses awaiting acceptance or rejection. Once
accepted, an empirical  law can be applied outside  the setting in which its predictive
power has been confirmed. Although our confidence in a law grows with each
successful application thereof, certainty that characterizes mathematical knowledge
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can never be attained in empirical sciences. While a mathematical theorem, once
correctly demonstrated, is accepted forever, empirical laws are vulnerable to
refutation. However, an empirical  law need not be automatically discredited if
negative results of further tests raise doubts about its validity. If some observations
depart from predictions deduced from a well established theory, the first suspicion is
that the theory has been incorrectly applied. Such an explanation is possible because
scientific knowledge is and must be conditional, that is, any scientific knowledge
claim is applicable wherever definite scope conditions are met. Whether these
conditions are or are not met is a matter of empirical knowledge.

The core laws of an empirical theory that are protected from hasty falsification are
called principles. Their epistemic status is the most contentious issue in the
philosophy of science. While, for realists, principles render objective regularities that
are discovered  by science in nature, for conventionalists, they are instruments
invented to enable a selective, concise and coherent account of the data. 

As Lakatos noticed (1970), an empirical theory does not drop out of the corpus of
accepted scientific knowledge because of being simply falsified. Once approved, a
theory is abandoned only if it can be replaced  by a  new theory which accounts for
all facts explained by the old theory as well as for some facts that the latter can't
explain. It is the strongest meaning of the postulate that scientific knowledge should
grow cumulatively.  

If two theories with the same scope contend for acceptance, it would be  pointless
to collect more data corroborating each of them separately. An investigation should
be designed so as to obtain an empirical basis suitable for testing these theories
against each other. Similarly, the evidence gathered for a judicial investigation should
allow the court of law  to point out one of the previously identified suspects as the
most likely perpetrator.

1.1.8. Every investigation, scientific or judicial, theoretically or practically
oriented,  is aimed at reducing cognitive uncertainty, first of all,  in any situation
where hypothetical answers to a question are known, but one is not sure of which of
them is true.

 The range of questions considered meaningful in an empirical discipline depends
on a particular formal representation of  a class of phenomena to be studied. The role
of specific theories that are formulated within a  given conceptual framework is to
determine or narrow down the set of  plausible answers to these questions.
Information provided by the data is needed in turn  to reduce uncertainty about which

ianswer to accept. If one were able to assign probabilities p  to mutually exclusive

1 n ihypotheses s ,…,s  (3p =1), the degree of uncertainty in this situation could be

1 n i 2 iestimated by means of Shannon's entropy function H(p ,…,p )= !3p log p  which

jattains the minimum  value  0 if and only if p =1, for some j, that is, maximal certainty

1 2is attributed to exactly one hypothesis. If two contradictory statements, s  and s ,  are

1 2 2believed to be equally likely (p =p = / ), the degree of uncertainty equals 1. A1

reduction of  uncertainty from 1 to 0 is referred to as the reception of 1 bit of
information.

“In a somewhat aphoristic form, science is an information-seeking process”
(Szaniawski 1976: 297). In light of formal information theory, richness of information
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and certainty, two items on our list of the goals pursued by science, turn out to be
conceptually intertwined. However, their understanding must remain intuitive until
an intersubjective practical method for measuring epistemic probability becomes
available. In general, the pragmatic aspect of the language of science admits of
limited codification, which  opens the door for sociological interpretations of
methodological rules as norms or conventions approved by academic communities.

1.1.9. We discuss in turn universality and generality, two highly evaluated
qualities that distinguish the laws from other accepted scientific propositions. “A
universal statement is a statement whose truth is independent of time, space, or
historical circumstance” (Cohen 1989: 78). To ascertain whether an empirical theory
is universal, one must put it to the test in at least two settings that  differ with space-
time or sociocultural coordinates. In the social sciences, “the cross-national and cross-
cultural replication experiment  is the only method of testing a theory for universality”
(Szmatka 1997: 95). To carry out  such a test for a sociological theory, one must build
an empirical system satisfying the theory's scope conditions within a different
sociocultural environment. This may appear unfeasible, even if the theory is universal,
as the conditions in which a  sociological law is applicable may seldom occur in the
social universe. Thus, what universality does mean is that the law predicts the
behavior of any  relevant empirical  system regardless of “historical” circumstances,
or those qualities of the system which have been recognized as  inessential and thus
not included in the scope conditions.

 According to Cohen (1989: 178), universality and deductive systematization are
both  required of a collection of conceptually interrelated testable statements in order
that it can be called an empirical theory. If universality is skipped as a too restrictive
condition of theoreticity, it returns as the basis of the traditional distinction between
nomothetic and idiographic (historical) sciences,  the former  being defined as those
capable of producing universal theories. The scope conditions of a universal theory
do not state when and where to find systems to which the theory applies.
Nevertheless, one must show that such systems do exist within the real world because
otherwise the theory would not be testable. An empirical theory which does not claim
universality, in order to be testable,  must also  have a definite scope to be specified
then by indicating the time, place, nation or culture where the theoretically predicted
regularities should occur.

In sociology, empirical “theories of the middle range” compete with “total systems
of sociological theory” (Merton 1968) or old and new “theories of the first
generation,” as Szmatka and Sozański (1994: 225–231) called general conceptual
maps of the social world at large as well as proper  theories that depict the workings
of particular social systems, but suffer from the lack of testing procedures or
explicitly stated scope conditions. In the same paper, sociological theories that are
free from these deficiencies were divided into two other “generations.” The latter
word was later replaced by Szmatka and Lovaglia (1996) with “genera” to
acknowledge the fact that none of the three kinds of theorizing that co-exist in
contemporary sociology is going to supersede others in the foreseeable future.

Sociological theories of the third genus, unlike those of the second genus, are
universal and abstract. In relation to natural sciences, Toulmin (1953: 44–56) used
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much similar criteria to contrast “physics” with “natural history.”  Faithful description
of things and events in the real world is not the only concern of  “natural historians.”
They want to explain facts by means of  “general laws” of the form “all As are Bs.”
“But so long as one remains within natural history there is little scope for explaining
anything: ‘Chi-chi is black because Chi-chi is a raven and all ravens are black’ is
hardly the kind of thing a scientist calls an explanation.” (Toulmin 1953: 49).

Lee Freese has drawn a similar distinction between  the “generalizing view” and
the “instrumental view” of theories and laws.

“Laws [viewed instrumentally] may be construed as nomothetic statements expressed

in universal or statistical form and having high information content, but they are not

meant to be generalizations about the world of everyday experience. The regularities

they describe exist in a theoretically possible world but not in the actual world. … If

theories are construed as describing some idealized state of affairs in a closed system,

with laws describing the invariances of the system, then they are devices for calculating

changes in the system when other things are equal. Though other things are never equal

outside of the closed theoretical system … laws may serve as tools for engineering

some change in an open empirical system whose departures from some theoretically

true state of affairs can be measured.” (Freese 1980: 191–192).

The instrumental view of laws, which is peculiar to the theories of the third genus, is
apparently incompatible with the realist stance in the philosophy of science. However,
a law, which in its abstract form applies directly to a class of  “theoretically possible”
systems,  applies indirectly to relevant real-world systems. Its successful indirect
application to an “open system” is possible due to universality. “Historical
embeddedness,” which makes an empirical system “open,” is not strong enough to
“disable” the law that still provides correct  predictions, the more accurate, the closer
the system to its theoretical model.

1.1.10. Universality should not be confused with generality being an independent,
important characteristic of a law or theory. The broader the scope of a theory, the
greater its generality,  regardless of  the nature, abstract or historical, of entities dealt
with by the theory.

In logic, the term general statement is referred to any proposition which states that
all objects have some property, which is written symbolically as �x(v(x)), where v is
a fixed property of objects represented by a logical variable x. Since, for any
individual constant c, the implication �x(v(x))6v(c) is a tautology, each individual
sentence v(c) predicating that c has property v can be deduced from the general
proposition attributing this property to all elements. The  derivation of a  particular
conclusion from the general premise is probably the best known pattern of deductive
reasoning (“all men are mortal, therefore, Fidel is mortal”). However, generality is in
fact a semantic concept because the phrase “all things” acquires a definite  meaning
no sooner than with pointing out a set X whose elements (or rather their names) are
to be substituted for x. The intended semantic interpretation of a general proposition
is marked explicitly by writing �x0X(v(x)) instead of  �x(v(x)). Then it becomes clear
that generality is a relative property. If YdX and Y�X, then the statement  �x0X(v(x))
is said to be more general than  �y0Y(v(y)). If X is a  set  of  n objects labeled

1 nc ,…,c , then �x0X(v(x)) is equivalent to the conjunction of  n propositions
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1 nv(c ),…,v(c ). Hence, the universal quantifier is indispensable in the scientific
discourse, insofar as the laws are meant to be strictly general statements, that is, they
should  hold true in domains containing infinitely many objects.

General statements are usually arrived at by induction. First, there must be known
some things that do have a given property v. Next, one must specify the boundaries
of a set X whose elements are expected to share this property. Lastly, when no c such
that not v(c) has been found in X, one claims that all x in X  are v. Consider a
formalized empirical theory, obtained from our formal theory of sex and kinship by
interpreting P as the relation of biological parenthood  in a population X of all beings
of a fixed species which have ever  lived, live  or  will live. If P5 is replaced with a
stronger postulate

P5': �x�y(xP y Y ¬(yPx)),tr

(which means that a descendant of any creature cannot  be its parent), then the general
proposition �x0X(�y0X(yPx)) can be true only in an infinite domain. Indeed, if  X is
a finite set, then one can prove the existence of at least one x in X  such that not  yPx,
for all y in X (see Theorem 3.8 in Harary, Norman, and Cartwright 1965: 64). Hence,
if one construes a species as a finite population of organisms living in the real world,
then the claim that “every creature of given species has a parent of the same  species”
can't be accepted, regardless of how hard is to find an organism that would not owe
its life to the event in which another organism of the same species had been involved.

Do infinite domains exist within the real world? If not, then the requirement of
strict generality may not be fulfilled by any theory of the second genus, unless its
scope conditions are modified so as to cover cases existing virtually in the possible
world. Such a scope extension is the first step toward constructing a theory of the
third genus.

1.2. Exact sciences 

1.2.1. Endeavors to generalize a theory as much as possible may result in
disregarding  other no less important goals of science that are usually easier to achieve
under more restrictive scope conditions. Generality really counts only if it goes
together with  precision and accuracy, as is the case, for instance, with Newton's laws
of motion, which not only apply to a broad class of mechanical systems, but yield
specific, quantitative predictions which agree remarkably well with measurement
results. “Although a theory may generate predictions that are highly precise, the
accuracy of those predictions – their correspondence to empirical observations – may
vary” (Markovsky 1997b: 19). There exist sociological  theories which offer exact
predictions of the behavior of some social systems, yet the gap between observed and
predicted results is often too wide and contingent on uncontrollable events. Hence,
the social sciences on the whole cannot yet be counted among exact sciences, or those
nomothetic empirical sciences that meet the standards of precision and accuracy to
a high degree.

In all empirical sciences, the quest for precision requires the transition from
concepts to variables. To transform a concept (e.g., that of income)  into a variable,
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one must begin from selecting  an appropriate unit of analysis – if the concept admits
more than one option in this matter (in the case of income, the unit may be  the
person, household, firm, etc.). Next, the domain of the variable should be pointed out
– as the set of objects varying in the respect considered important by the researcher.
Which objects of the chosen type will be included in the domain depends on intended
generality of  the hypotheses to be stated with the use of the variable. Lastly, certain
values must be assigned to the elements of the domain so as to reflect the differences
among them. Thus, in  set-theoretic terms, a variable is a mapping of a set of objects
into a set of values. Variables – in this meaning – should not be confused with logical
variables. The latter are symbols (in formalized languages) or common nouns (in
natural languages) that enable us to speak of things, points, numbers, or other entities
without the necessity to point out concrete elements of appropriate sets. 

It is convenient to identify all variables having the same domain X with the
mappings of X into the set  ú of real numbers. The role of mathematics in empirical
sciences does by no means reduce to the use of numbers, yet greater precision is
usually attained in exact sciences through replacing qualitative with quantitative
statements. When you can recognize whether two things x and y do or do not differ
from each other in some respect, you would like to also know how much differ the
two things that differ, which requires defining a variable V and computing the
difference V(x)!V(y) of the values of V for x and y, or the distance *V(x)!V(y)*
between them – if the order of values is unimportant.

Variables are classified according to many criteria. The properties of the set of
values a variable may assume are taken into account (discrete vs. continuous
variables) as well as the nature of the objects that form the variable's domain
(individual vs. collective variables; see Lazarsfeld and Menzel 1964) or methods for
assigning numbers to objects.

The major benefit of the use of real numbers lies in the possibility to express
various relationships between variables with the use of mathematical structures
(order, algebraic operations, distance, topology) available in ú. However, for some
variables,  numerical values must serve solely as names for certain mutually exclusive
attributes. In particular, any property of elements of X – equated with a subset A of

A A AX – can be represented by a variable V  such that V (x)=1 if x0A and V (x)=0 if
xóX!A. The variables associated with X and i are constants assuming each only one
value, 1 or 0, respectively.

If neither A nor  X!A is empty, then the two-element family {A,X!A} is a partition
of X. The term partition of X is referred to any nonempty family A of nonempty sets
such that their union is X  and the intersection of any two different sets in the family

A Ais empty. Any partition A of X generates the equivalence relation R  in X, xR y being
defined by the condition: x,y0A, for some A0A, that is, any two elements x and y in
X are equivalent if and only if they are members of the same set in A. Conversely, to

Rany equivalence relation R in X there corresponds the partition A  of X into
equivalence classes with respect to R. The equivalence class of an x0X consists of all

Relements in X which are equivalent to x, symbolically, [x] ={x'0X: xRx'}. Since

Rx0[x] , equivalence classes are nonempty and their union is X. Symmetry and
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R R R Rtransitivity of R imply in turn that either  [x] =[y]   (if xRy) or [x] 1[y] =i (if not
xRy). Therefore, the family of equivalence classes is a partition of X.

To illustrate the correspondence between partitions and equivalence relations,
consider relation E which has been introduced to formalize being of the same sex.
Assume that there exist at least two nonequivalent elements in X, say, a and b. Then,

EP4 implies that the partition of X generated by E consists of exactly  two sets,  [a]

Eand  [b] . If an element m is chosen to play the role of the “standard male,” then aEm

E E E Eor bEm. Suppose that  aEm. Then, the sets [a] =[m]  and  [b] =X![m]  can be
termed, respectively, the set of  “males” and that of  “females.”

1.2.2. We say that a variable T represents a partition A if, for any x, y0X, x and y
are in the same class in A if and only if T(x)=T(y). Thus, to represent the sex partition
by a variable, it suffices to assign any two distinct real numbers to the two sex groups.

E EIn particular, put V(x)=1, for x0[a] , and V(x)=0, for x0[b] . Another representation

Eof the same partition is obtained by putting V'(x)=0, for x0[a] , and V(x)=1, for

Ex0[b] .
Let variable  T represent a partition A and ( be a 1–1 mapping of ú onto ú. Then

the composition of ( with T  represents A as well. The above two representations  of
the sex partition are related to each other in such a way because  V'="BV, where
"(r)=1!r, for all r0ú.  

0 0Let  '   denote the set of all 1–1 mappings of ú onto ú. Notice that if (, ('0'

0 0 0then (B('0'  and ( 0' . Let ' be a nonempty subset of '  having the same-1

properties, that is, the composition of any two mappings in ' and the inverse of each
of them are in ' as well. Variables T and T' defined on X are said to represent the
same construct of type ' if there exists a  ( in ' such that  T'=(BT. For example, let

1 0'  stand for the subset of '  made up of order-preserving mappings, where ( is said
to preserves order if  r#r' implies ((r)#((r'), for any r, r'0ú.  Variables V and V'="BV,

0which represent a construct of type ' , may not represent the same construct of type

1 1'  because there is no $ in '  such that  V'=$BV.
In set-theoretic terms, constructs of type ' are equivalence classes generated by

the relation of '-equivalence that is defined in  the set of all variables on X  by the
condition: T' is  '-equivalent to T if and only if T'=(BT, for some (0'. Constructs of

0 1type '  and '  are called, respectively, nominal and ordinal, which terms are also
referred to variables representing these constructs.

 Since “measuring” nominal constructs amounts to classifying objects and
attaching numerical labels to the classes, the term “measurement” (see Suppes and
Zinnes 1963)  is usually reserved for such ways of assigning numbers to things or
events that numerical values preserve a weak order relation that is assumed to exist
in X  prior to being represented by the relation # in ú. The term weak order will be
referred here to any binary relation  in X (noted  with same symbol as its counterpart
in ú) that meets the conditions of  transitivity (for any x,y,z0X,  x#y and y#z implies
x#z) and completeness (x#y or y#x, for any x, y0X). A variable T is said to preserve
a weak order # in X if, for any x,y0X,  x#y if and only if T(x)#T(y). Then,  x<y iff
T(x)<T(y) and x�y iff T(x)=T(y),  where x<y  stands for not y#x  and x�y stands for
x#y and y#x. The relation < defined so in X,  like its counterpart in ú, is strictly
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antisymmetric and transitive, while � is an equivalence relation; the respective
equivalence classes can be named the levels of a measurable construct.

1 2 3 1 2 3Suppose that x <x <x  so that  T(x )<T(x )<T(x ) if T preserves the weak order

T 1 2 2 1in X. The number l (x ,x )=T(x )!T(x )) is referred to as the length of interval

1 2 1 2 1 2 1 2[x ,x ]={x0X: x #x#x } or the distance between x  and x . Two intervals,  [x ,x ] and

2 3[x ,x ], are of equal length or one of them is longer than the other, yet the result of
length comparison always depends on which of many variables representing the same
ordinal construct has been picked to compute the interval length. For example, if three
levels of competence are assigned numbers 0, 1, 2, then the distances between
successive levels are equal to each other. If the same three levels are coded with
numbers 0,1,3, then the middle level is closer to the lower than to the upper level. The
order of distances will be  reversed if another ordinal  scale is used, say, the one with
values 0,2,3.

Scale-invariant comparisons of interval lengths are possible for interval constructs
defined by admitting as scale transformations solely order-preserving linear

2 2mappings of  ú onto ú. Let '  denote the set of these mappings. Any element of '

a,bis determined by two real numbers a and b, where a>0, the value of (  for any r0ú

a,bbeing given by the formula ( (r)=ar+b. The assumption that a>0 implies that

2 1' d' .

2 a,bLet T and T' be two ' -equivalent variables, that is, T'=( BT, for some a and b>0.
The lengths of an interval [x,y] computed with the use of  T' and T are related to each

T' T T 1 2 T 1 2other by the formula  l (x,y)=al (x,y), which implies that the ratio l (x ,x )/ l (y ,y )
of two interval lengths will not change if T is replaced with another scale representing

2the same construct of type ' . For example, two intervals of length equal to  20 and
10 Celsius degrees will have the lengths of 36 and 18  Fahrenheit degrees
(F°=(9/5)C°+32). The greater of two intervals is twice as long as the smaller under
both scales that measure the  same interval construct. The ratio of the numbers
assigned to two temperature levels does not share this property, for instance, the ratio
of 20 to 10 changes to 68/50=1.36. The value ratio becomes a scale-invariant quantity

3 a,bif the range of admissible scale transformations is restricted to ' ={( : b=0}. Ratio

3constructs, or those of type ' , admit of the existence of an absolute zero, or the level
which receives value 0 under every scale representing the construct. Invariant

4assignment of all numbers characterizes absolute constructs, or  those of type ' ={4},
where 4 stands for the identity transformation (4(r)=r). Each absolute construct is
represented by exactly one variable.

Construct types, also called measurement levels, are naturally ordered from
nominal to absolute according to narrowing range of admissible scale transformations

0 1 2 3 4(' e' e' e' e' ). Although new invariant properties add at each level to those
inherited from the previous level, the leap from ordinal to interval level turns out most
significant, which yields the dichotomous division of constructs types into qualitative

0 1 2 3 4(types '  and ' ) and quantitative (types ' . ' , ' ).
 These terms as well as the  names of construct types are also referred to variables.

A real-valued mapping T of a domain X becomes a variable of type ' by virtue of the
researcher's decision to consider all variables '-equivalent to T as interchangeable
representations of some structure  in X (operationally defined or theoretically assumed
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to exist). Interval or higher level of measurement is commonly presumed by
sociologists for many variables, in particular, those obtained by having people
respond to close-ended questions where intensity-ordered answers, ranging, say,  from
“strongly disagree” to “strongly agree,” are assigned values of 1 through 5 or !2, !1,
0, 1, 2. The only rationale behind the stipulation that such variables are quantitative
is usually the need to underpin the practice of calculating for them the arithmetic
mean and other statistical parameters.  This practice, which Torgerson  (1958: 21–25)
aptly named measurement  by fiat, contrasts sharply with fundamental measurement
where the validity of a procedure by means of which an empirical domain is mapped
into ú rests on a relevant empirical theory. The choice of a measurement level is then
no longer made arbitrarily because the same theory determines how any two
acceptable numerical representations of an empirical domain should be related to each
other.

The third, indirect  kind of measurement, known as derived measurement, consists
in applying a mathematical operation to two or more variables that are directly
measurable in the fundamental way. The validity of such a construction that yields a
new variable is also warranted by an appropriate empirical law. For instance, density
–  a variable characterizing substances – is defined as the ratio of mass to volume in
virtue of the law which states that the ratio of these two quantities takes a constant
value for every amount of a fixed homogenous substance.

1.2.3. In the empirical sciences, variables serve to formulate theoretical hypotheses
and their directly testable consequences.  What can be studied for a single variable is
only the distribution of values the variable assumes in a set of objects. Given two or
more variables, one wants to know how their values co-vary over the common
domain. To construct a theory whose axioms have the form of interrelated
“covariance hypotheses” (Blalock 1969), one has to select a set of variables and
decide on which of them will play the role of  independent variables in relation to the
remaining variables, called dependent, whose values could be predicted with a
negligible error whenever the values of the independent variables are known. The
independent variables are assumed to vary independently of one another,  their values
occur in many diverse if not all configurations; in experimental systems, it is the
researcher who has to make sure that this condition is met.

Although empirical theories are often constructed so as to discover and formally
express “causal” linkages among variables, it is the notion of  “dependence”  rather
than that of “causality” that has gained a more “technical” meaning in the language
of science. In the simplest case of two variables V and U,  V is said to be functionally
dependent on U if there exists a mapping F of  ú into ú such that V(x)=F(U(x)), for
any x0X,  where X  is the domain of U and V.  

Variables or quasi-variables (concepts that lend themselves to being transformed
into variables) appear in all three 3 genera of sociological theorizing.  Theories of the
first generation abound in propositions of the form  “the greater the division of labor,
the greater the organic solidarity.” To convert such a covariance statement to a
testable hypothesis, one has to recast the two concepts as regular variables, V (the
dependent variable) and U (the independent variable). If a “translation” from the first
to the second generation of theories is intended, the common domain of these
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variables mus be defined as a collection of historical social systems. Having assumed
interval measurement (by fiat) for the two variables, one could try in turn to express
the dependence of V on U by means of a linear equation  V=aU+E where the error
variable E is added to the predicted dependent variable aU in order to account for its
deviation from the observed dependent variable V.  To reduce the size of error, one
could  use more than one variable to predict the values of the dependent variable (with
two independent variables the linear dependence could have the form
V=a'U+b'U'+E').

Second generation theories are expected to provide systematic account of
multidimensional differentiation that is actually observed in natural social settings
where regularities usually occur in a blurred form due to complex and casual ties
within the multitude of variables operating in every concrete population. When the
main sources of variation and specific patterns of dependence cannot be identified
prior to data collection – for the lack of a “theoretical model” – one may try to
construct a  “methodological model” (Skvoretz and Fararo 1998), or extract
regularities directly from the data by means of standard procedures of multivariate
statistical analysis. The choice of variables (observable variables may be supplemen-
ted with latent ones) and specification of their functional relationships are then
subordinated to the main goal defined in statistical terms as explaining as largest as
possible share of the total variance of each dependent variable. This goal can often
be attained – at the cost of making a second generation theory more complicated – by
enlarging the list of independent variables and/or trying to express dependence by
means of  more sophisticated functions.

Theories of the third generation are constructed with the aim of  bringing the
social sciences closer to the exact natural sciences where the ideals of parsimony and
simplicity  need not be sacrificed for the sake of precision or accuracy. Each theory
of the kind describes the behavior of a class of abstract  or ideal systems by means
of a small set of theoretical variables. Some of them, though not necessarily all, must
have their observable  counterparts in empirical replicas of abstract systems. The
idealization strategy of theory construction in exact sciences rests on distinguishing
four categories of observable variables operating in each empirical replica of an
abstract system: (1) observable counterparts of some theoretical variables; (2) scope
variables, or variables  whose fixed values are used to state the conditions in which
theory-predicted relations between variables of type 1 are expected to hold;
(3) disturbing variables responsible for the deviation of actually observed  covariances
from perfect functional relationships connecting theoretical variables; (4) irrelevant
variables, or those recognized to have no bearing on the theory's scope or prediction
accuracy.

The interplay between theory formulation and theory testing makes science a
going concern. Some research results may prompt a re-classification of variables, for
example,  a shift of a variable from category 2 to category 1 or 3. If  a scope variable
is moved to the set of independent variables, the theory will become more general but
less parsimonious. 

As shown below (Szmatka and Sozański 1994: 230–231), effective use of the
idealization strategy encounters serious difficulties in the social sciences, even if the
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theory's scope is confined to artificial social systems in which the impact of disturbing
variables can be reduced to a minimum or at least controlled.

“In a laboratory system, the experimenter can, to be sure, control the structural

conditions of human actions but must always fill positions in the system with concrete

individuals shaped in a particular sociocultural context. ‘Why is it then that Galileo did

not consider the color of his shirt or the phase of the moon when he evaluated the

results of his trajectory experiments?’ (Willer 1987: 221), and why do sociologists, in

order to explain the behavior of experimental subjects, sometimes need to consider

such factors as personality or situation variables thought of to be ‘at work’ in a given

setting? ‘The answer does not lie in the difference between animate objects which we

investigate and the inanimate objects which he investigated. Instead the answer lies in

the evidently clean results of his experiments and in the fact that they could be

reproduced by him or by others as needed.’ (Ibid.).”

Why some empirical sciences are able to produce general and universal, precise and
accurate, parsimonious and simple theories? Certainly, the ability to obtain “evidently
clean results” in repeated experiments depends to a high degree on how the  set of
relevant variables is “organized” into a research design. The use of  suitable
mathematical means to express relationships between theoretical variables is no less
important, as David Willer observed  (1987: 8). 

“In fact, it was through the use of geometric models that the experiments of classical

physics were designed. However, the opportunity to systematically generate theoretic

models in sociology has required first the development of graph and network theory …

Lacking a geometry for the representation of its phenomena, the classical tradition of

theory missed the opportunity to develop social theory as formal theory from its

outset.”

Does the validity of an empirical theory hinge upon the existence of an “order” in the
world out there?  According  to Willer, the “criterion of truth” upon which scientific
knowledge is validated  is coherence of theory and evidence.

“Within the process of scientific inference, no assumptions are made concerning the

regularity or irregularity of the world. No such assumptions are needed because the

relations among objects and events are first drawn in theory and only then compared

point by point to bits of information from the world. … Does replication [of

experiments] prove that the world is regular? No, for replication proves only that theory

can so organize the world and our view of it that at least some parts of our perceptions

can be made to appear regular  – and that is quite another thing” (Willer 1987: 12–14)

In fact, empirical sciences do without the assumption that the world is regular.
Ancient astronomers did not assume that celestial bodies behave regularly. They
discovered that the position of these objects in the sky at any moment can be
calculated with great accuracy. The discovery of a  “natural order” in some area of the
universe may give rise to the form of scientific knowledge, called by Szmatka and me
theories of the second generation, but a “hard” scientist,  having  discovered a
regularity, will try to explain it by offering a general, universal, precise, testable
theory that abstracts from particular occurrences of the regularity and concrete
objects, which are modeled by ideal objects where “ideal” means “existing within a
structured mathematical domain.”
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Some advocates of the idealization strategy in sociology (Wysieńska, Szmatka
2002) believe that the test of a third generation theory should be conducted within the
“theory world” that transcends the concrete “external, phenomenal reality.” However,
empirical replicas of abstract systems do not differ  with the stuff they are made of
from empirical systems  studied by the theories of the second generation.  It is not true
that “the social laboratory, unlike the physical laboratory, may be cleanly separated
from the phenomenal world outside” (Willer 1987: 214). Willer would be right only
if  live subjects interacting in an artificial  computer-aided environment were replaced
by computer programs, but  simulating a theory-predicted process is not equivalent
to testing the theory. The “theory world” can only be conceived as the world of
mathematical domains and set-theoretic constructs. Having entered this world, we can
verify logical consistency of a formalized empirical theory, which, once formulated,
has to be tested in the real world, the one we perceive with our senses and rearrange
with our actions.

1.2.4. Theory and evidence should be conceived of as two distinct, independent
sources of information about one world of experience, but independence does by no
means imply that the data must be “theory free.” Even the judicial investigation does
not reduce to collecting facts having anything to do with the criminal case. It is
“driven” by the prosecutor's theory, which of course may be undergoing modification
as new facts are coming to be known. In exact sciences, relevant experimental
evidence is generated through fundamental or derived measurement. The instruments
with which theoretical variables (or rather their empirical realizations) are measured
are themselves constructed according to the prescriptions based on the theory being
tested. Another tenet of the presented here common sense philosophy of empirical
sciences states that the two sources of information about the world  must not be
attributed equal credibility. It is the theory that is to be tested against relevant data,
not conversely.

Willer claims that the goal of a scientific experiment is to confirm that a theory
being tested really “works” – as an effective instrument with which we can “ organize
the world and our view of it”  into a coherent whole. Actually, what is being tested
is universality and accuracy of theoretical predictions. First, to invoke again Willer's
example, we have to ascertain if the motion of a bullet remains unaffected by the
circumstances in which it takes place. While universality hardly ever needs to be
verified in the physical sciences, in the social sciences, the distinction between
relevant and irrelevant  variables is not always easy to be drawn; in some cases, one
can't ignore “the color of Galileo's shirt” as it can be a disturbing rather than irrelevant
variable. Secondly, we need to compare the observed trajectory (recorded for the
bullet by means of an appropriate measurement instrument) with the theoretical
trajectory (calculated for the material point modeling the bullet). The theory is
considered to have been corroborated if the two trajectories are sufficiently close to
each other, the difference between the two being explained by the influence of
disturbing variables.

What makes an exact science exact, according to Willer (1987: 220), “is the exact
use of theory, not necessarily the exact production of clean results … the criterion
should be that a better theory is one which can produce cleaner data, not that it always
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do so.” Obviously, one can't require of any theory that its predictions always be
equally accurate. However, a precise theory becomes practically useful insofar as it
can provide relatively accurate predictions relatively independently of the context in
which it is being applied every time. If very restrictive conditions need to be imposed
in order to produce sufficiently “clean” data, then the theory becomes useless outside
the setting in which it has passed the test,  the setting in which the theory's  prediction
accuracy has reached the level considered satisfactory in a given discipline. As a
consequence, exact sciences are expected to meet another methodological standard
besides high precision and accuracy. The results of experimental tests should be
stable, which means that a small a change of the setting in which a given regularity
has been detected in its purest form should cause a relatively small decline in
prediction accuracy.

Will the social sciences ever attain the level of  precision, accuracy and stability
comparable to that already achieved in exact natural sciences? Physics has always
been recognized as the embodiment of the ideal type of exact science. Sociology, as
it were, called at birth  “social physics” (Comte abandoned this name when Quetélet
used it to denote the study of social statistical regularities), has at best enjoyed (at
least since the appearance of Durkheim's Le Suicide, 1897) the status of a normal
empirical discipline.

It is clear that physics and sociology deal with different objects, use different
variables to describe them, develop different paradigms and theories, and apply
different data generation procedures. Do they also differ with general  methodology
of theory testing? Let us compare a sociologist studying a  task group in a laboratory
with a physicist investigating the motion of a particle. Both experimenters can trigger
off some processes in empirical systems whose behavior is going to be registered, yet
the physicist cannot  tell the particle to move along the theoretically calculated curve,
whereas the sociologist, owing to his ability to communicate with human agents, can
make them familiar with his theory and induce them to behave accordingly. If we
catch a sociologist talking experimental subjects into the behavior predicted by his
theory, should we blame him of a violation of a general methodological norm or
should we rather recognize his communicative action as a legal way of testing a
sociological theory?

If the only purpose of an experiment were to reveal the form of a regularity, then
it would suffice to simulate  theoretical behavior in a “virtual world” –  where
“virtual” means “entirely artificial” rather than “imaginary” or “mental.” A virtual
dyadic social system – made up, for instance, of two interacting programs running on
two  networked computers –  is no less real than a pair of human agents who negotiate
“consciously” or a mixed system in which a live individual interacts with a computer
program. Simulation, no matter how it is technically implemented, cannot replace
theory testing. Having seen the  theory “in action” in a virtual system, one can never
be sure that the theory will work equally well when applied to a real experimental
system. Therefore,  if we want to learn – what we don't know in advance – if real
actors actually behave as regularly as our theory claims, we have to carry out an
empirical test. If the experimental subjects “reproduce” the theory because they have
been “programmed” to do that by the researcher, then the test turns into simulation.
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1.2.5. Testing empirical theories in exact sciences resembles demonstrating
consistency of formal theories through constructing their models, that is, the
experimenter is looking for an empirical domain in which theoretical predictions and
relevant observational statements are true. Theoretical predictions, or empirical
consequences of a formalized empirical theory, are deduced from the formal theory
(which was used to formalize the given empirical theory) and some rules linking
abstract objects and variables with their observable counterparts.

The formal sciences accept any objects for constructing semantic models. The set
{t,m,d} made up of three concrete mortals, we used in the previous section to prove
the consistency of our kinship theory, might be replaced with any 3-element set, say,
{1,2,3}. The empirical sciences require the construction material coming from the real
world. In addition, my decision to include ordered pairs (t,d) and (m,d) in the
empirical relation of parenthood is not arbitrary: I (t) and my wife (m) are in fact
parents of  our daughter (d).

There is another important difference between empirical models and formal
semantic models, namely, theoretical propositions – reformulated so as to apply to
empirical objects – are usually expected to be merely approximately true in
appropriate empirical domains. To put it more formally, let D:X6ú  be a variable
whose values are assigned to the elements of an empirical domain X by some data
generation procedure. Let T:U6ú be a theoretical variable defined on an abstract
domain U. Variables D and  TBC where C is a mapping of X into U are  both defined
on X. We call them, respectively, an observable counterpart and empirical
representation of the theoretical variable T. Let  r and r' denote the values of D  and
 TBC  observed and predicted, respectively, for a given object a in X. We say that the
theoretical prediction T(C(a))=r' has been corroborated by the observational
statement D(a)=r, or that the prediction statement is approximately true for a,  if
|r!r'|#, where , stands for the acceptable level of accuracy.

1.2.6. The pattern of theory construction and theory testing which is characteristic
of exact sciences will now be illustrated with a sociological example. My aim is also
to give the reader a foretaste of the main subject matter of this book, or the
mathematical modeling of social systems endowed with a network structure
determining the actors' opportunities to negotiate mutually beneficial transactions. Let
the empirical domain consist of experimental groups each made up of 5 people who
agreed to act according to the following instructions 

1. Any group of five subjects is divided into two disjoint subsets, A and B,  with
2 and 3 members, respectively. Group members are permitted to communicate
with one another solely in couples, each made up of a member of A and a
member of B.

2. The communication process in each pair is restricted to negotiating a bilaterally
acceptable division of the pool of M points. The two parties are allowed to send
offers to each other and respond to each other's offers. If an offer sent by one
subject is accepted by the other subject, there follows a transaction, that is, the
subjects receive their negotiated shares.
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3. Every subject is permitted to conclude no more than one transaction in each
negotiation round which ends up as soon as all admissible transactions have
been concluded or the time allowed for negotiations expired.

4. All subjects have full information about the system and all events happening
there. 

5. Every subject should act so as  to score as many as possible points for himself
in any negotiation round. 

Any 5 persons who have understood  and acknowledged the above rules become
actors in an  experimental social system whose structure – determining the actors'
opportunities to gain valued resources – is established by the experimenter
responsible for implementing Conditions 1–3. In virtue of Condition 4, each actor can
also watch what is going on in the dyads in which he is not involved. The last
condition defines the actors' goal-orientation. Each actor is supposed to negotiate so
as to maximize his own profit only, but “tactical” decisions on how to pursue this goal
are left to himself.

What is the most likely outcome of the systemwide negotiation process? Even
though interpersonal differences in bargaining skill may well affect the shape of
reward distribution, a sociological theory should take into account, in the first place,
the structural source of unequal benefits. Notice that Condition 1 establishes a
5-person “two-class society” made up of the “upper class” (A) and the “lower class”
(B). The two classes  differ with the number of transaction opportunities, moreover,
in virtue of Condition 3,  at most 4 out of 5 actors may gain points in every
negotiation round, and the one who fails to find a free partner for a transaction is
always a member of B. Hence, each actor  in B,  in order to avoid dropping out of the
game, is forced to make competitive offers to his potential partners in A. Therefore,
there are good reasons to suspect that the “rules of the game” give to the members of
A an advantage over the members of B. To verify such a prediction, one would have

0 2 1 2to test the null hypothesis H : := / M against the alternative hypothesis H : :> / M,1 1

where :  stands for the expected value of a random variable V whose value  V(x) for
an experimental group x is the average score of the members of the advantaged class.
(We assume that the reader is familiar with the fundamentals  of statistical
inference.).

0In order to test H , one has to run the experiment with a sample of n groups, and

g 0compute the mean (1/n)3V(x ) of observed values of V. If  H  gets rejected, the
sample mean – used in turn to estimate : –  can serve as a measure of how strong  is
the effect of the “class structure” on “income distribution.” Let us add that prior to
announcing the discovery of a statistical regularity, one has to make sure that the
“data points” concentrate around : and their dispersion can be further reduced by
selecting subjects from a more homogenous  population.

The ambition of the third type of theorizing in sociology and exact sciences in
general is to provide exact predictions of certain empirical quantities. Thus, our
fictitious study need not end up with decomposing the dynamics of the empirical
social system into a constant component (determined by the system's structure) and
casual disturbances (produced by the human “material”).
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Let us represent the communication structure common to all experimental systems

ias an undirected  graph G=(N,L) where N={P : i=1,…,5} is a finite set whose

2elements are called positions, nodes, vertices, or points of G.  L is a subset of - (N),
or the set of all 2-point subsets of N. The elements of L are called  lines (edges, links)

i jof G. A line {P ,P } is a formal counterpart of a two-way communication channel

i jconnecting two distinct positions P  and P . In accordance with Condition 1,
connections should occur exclusively between a  subset of N made up of 2 points –

1 2label them P  and P  – and the other subset containing the remaining 3 points.

i jFormally, L={{P ,P }: i=1,2; j=3,4,5}. Note that the definition of  G abstracts from
concrete technical conditions created by the experimenter to enable communication
within a 5-person group.

To build an experimental system modeled by G=(N,L), one needs to assign actors
to positions, which, for any set of 5 subjects, say, {Ann, Bob, Chuck, Dave, Ed}, can

1 2 3 4be done in 5!=120 ways, for example, P :Ann, P :Bob, P :Chuck, P :Dave,

5P :Ed.

The experimenter may instruct the subjects to associate positions with seats, cubicles

or workstations they will be placed at, yet the instructions can be stated without any

explicit reference to graph G ,  its nodes or any other “theoretical” entities. Ann doesn't

1 3 4 5need to know that she occupies position P  connected to positions P , P  and P ; she

must be instructed that she can communicate with Chuck, Dave and Ed, but not with

Bob, etc. The computer network is but a means of creating a social network with a

given communication structure. The program managing an experimental session makes

it easier to enforce the rules which define who can contact with whom as well as to

record all theoretically relevant events and disable many variables that affect

interpersonal communication in a face-to-face setting.

Given a one-to-one correspondence between N and a set of actors, the values of any
variable defined on N can be transferred from positions to their occupants. Which of
many mappings of the set of nodes of G  into ú are suitable for  building a
“structural” theory of social inequality?

1 Suppose first that the actors in position P  have earned on average significantly

2more points than the occupants of P . To account for this finding, we may resort to

1 2any variable F such that F(P )>F(P ). Even though F is defined on the set of
theoretical objects, it is not a structural variable because it assumes different values

1 2for two positions P  and P  that are structurally indistinguishable, which means that

1 2there exists a 1–1 mapping " of N onto N such that "(P )=P  and the image of any
line in L is in L (then "  is said to preserve L, or the structure of G). Therefore, our
experimental result is an anomaly within the general paradigm admitting structural
variables alone as theoretical predictors of mean earnings on positions. Instead of
rejecting the general  paradigm, we would rather ascribe the anomaly to a biased
actor-position assignment  or some flaws in the technical realization of G.

Suppose now that no significant difference has been detected between the earnings

1 2of the occupants of P  and P . As a consequence, we need  only one empirical
variable V to describe the result of the negotiation process in any experimental system

g g1 g5 giwe can represent  symbolically as  x =(x ,…,x ) where x  stands for the member

iof gth group placed at position P . If only one negotiation round is run for each system
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and the cases with less than two transactions are excluded from the analysis, then

g 2 g1 g2 gi giV(x )= / (s +s ) where s  is  the score of actor  x .  Now, instead of contenting1

ourselves with estimating the mean value of V,  we can try to predict it under the
assumption that the division of the profit pool by the occupants of two connected

i jpositions P  and P  depends solely on the pool size M and the respective values of a

istructural variable F. For example, let us express P 's theoretical share by the formula

 and take – as a tentative measure of “structural power” an actor

iiacquires by being placed at P  –  the degree Deg(P ) that is defined in graph theory

j i j i ias the number of P  such that {P ,P }0L. Since Deg(P )=3, for i=1,2, and  Deg(P )=2,

1 2for i=3,4,5, the predicted gain of an occupant of P  or P  from a transaction with an

3 4 5occupant of P , P  or P  equals (3/5)M.
To calculate the above theoretical quantity, we assumed that the “power” of an

actor  is directly proportional to the number of his potential transaction partners. For
simplicity, we ignored Condition 3,  or the one-transaction rule. The rule may
generate an even stronger imbalance in payoffs between the two “classes,” as it

3 4 5implies that none of the three “applicants”  (actors in positions P , P , P ) can be sure

1 2to get a job when there are only two  “employers” (actors in positions P  and P ) who
need each  to hire just one worker so that one of three potential “employees” will
always be “excluded.”

The formal theory of  “exclusionary power” will be developed in Chapter 3. I have
alluded to the theory's  “labor market” interpretation  (Lovaglia 1999), to reassure the
reader-sociologist that the quest for exact social science is by no means an escape
from classical problems of “social theory.” 

1.3. Foundations of social science. Social mathematics
   and mathematical sociology

1.3.1. What unites all mathematical sociologists is the belief that sociology must
sooner or later discover the benefits of the use of mathematics, insofar as it aspires to
be counted among the basic sciences. 

“The richness … of experience which social science attempts  to capture and codify …

may be one reason why sociology is perhaps the last of the empirical sciences in which

the main stream of effort is as yet almost wholly discursive and nonmathematical. Yet

it is the essence of empirical science that, whatever the richness and complexity of the

behavior it aims to describe, it must proceed first by analysis into simple regularities,

and only then by synthesis into more complex structures. … It is, in fact, the

paradoxical combination of simplicity and a potential for expansion into complexity

which constitutes much of the value of mathematics as a language for science.”

(Coleman 1964: 1–2).

Many social theorists doubt about the usefulness of analytical tools offered by
mathematics because they uphold Comte's teaching on complication supérieure of
social phenomena.  Szmatka and Sozański (1994), who criticized this “foundation
myth” of sociology, found quite the opposite view more convincing(Willer 1987:
215).
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“Since the social world is wholly a human construction, it can contain no more

information than people have put into it. Since the physical world is not so limited, it

is reasonable to infer that the social world contains less information than the physical

world and is simpler.”

The sociologists who attribute a higher level of complexity to supraindividual entities
tend to neglect a more essential difference between social wholes and psychophysical
wholes. The former for their fuzzy nature are often harder to identify by the observer
within the totality of  social phenomena.

If you conceive of complexity as a quality of  a cognitive map that is already
sketched, then Willer is right. Those known forms of organized complexity which
exist in the social world are certainly simpler than most organic or nonorganic
systems studied by the natural sciences. Nevertheless, the potential for disorder and
unpredictability is hardly ever fully actualized in the real social world. We know from
everyday experience and more systematic historical narratives that people's behaviors
form regular chains.

1.3.2. The nature of social regularities has intrigued early and new “masters of
sociological thought.” The impact of their philosophical treatises on understanding
theory in today's sociology is still strong, as evidenced  by the list of books  published
in the 20th century which were  recognized as most influential by 455 members of the
International Sociological Association who took part in a survey organized in 1997
(see the ISA website for details). Anthony Giddens, whose book (The Constitution of
Society, 1984) received 21 votes (rank 14) in the competition which was won with 95
votes by Max Weber's Economy and Society, equates regularities with
“generalizations,” thus agreeing in this respect with the positivist tradition he
criticizes for the neglect of human subjectivity and creativity.

“Some [generalizations] hold because actors themselves know them – in some guise –

and apply them in the enactment of what they do. … Other generalizations refer to

circumstances, or aspects of circumstances, of which agents are ignorant and which

effectively ‘act’ on them …  ‘structural sociologists’ tend to be interested in the

generalizations in this second sense… But the first is just as fundamental to social

science as the second … ”  (Giddens 1984: xix)

Sociologists often content themselves with explaining behavioral patterns occurring
in some typical situations by attributing to the actors the knowledge of certain rules
which prompt them what to do in these situations. Giddens (1984: 21–22) defines the
“rules of social life” as “techniques or generalizable procedures applied  in the
enactment/reproduction of social practices.” He believes that “awareness  of social
rules … is at the very core of that ‘knowledgeability’ which specifically characterizes
human agents.” Seen in this perspective, the soldiers' obedience results from the
knowledge of  the rules that establish behavioral dependence between  the occupants
of inferior and superior positions in social systems of the kind called by Weber
Herrschaftsverband. “Knowledgeable agents” who happen to occupy positions in
such a social system don't  need to be instructed explicitly on how to behave, they
may well infer the rules from the regular practices they can watch going on around
them. No matter how the rules are learned, does the mere knowledge of them  suffice
to account for the fact that soldiers “as a rule” obey orders of their commanders?
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While a “social physicist” would look for a “social force” forcing people to do what
they are told to, a sociologist would rather turn to linguistics in search of paradigms
making more technical use of the notion of a rule. Weber himself was little interested
in language, as evidenced by his magnum opus impressing the readers with the
author's expertise in law, economy, and religion. His successors in interpretive
sociology and students of discourse (van Teun 1997 Ed.) have shown more interest
in the study of similarities, affinities and connections between social and language
structures (Fararo and Butts 1999).

1.3.3. A linguistically informed social scientist will see in any action sequence in
a social action system (such as a discussion group or a Herschaftsverband)  a sample
of parole, or “speech” in an appropriate “language of social actions”
whose“vocabulary” is a  repertoire of  verbal or nonverbal acts that can be performed
by the actors and are recognized  by a  verstehende observer and the actors themselves
as meaningful in a given interaction setting. Assume that the set of composite
expressions  that are acceptable in such a semiotic system (we will use the term
“semiotic code” interchangeably) contains sequences  of the form  “B answers a
question asked by  A” or  “B does what A told B to do,” that is,  two “statements”
which form a “string” have been made by two distinct “speakers.” The occurrence of
such sequences admits an explanation in terms of the actors' “grammatical
competence” if  the notion of a grammar is extended so as to cover the rules
governing the production of “multi-speaker parole.”

In the study of natural languages, a single self-contained statement has
traditionally remained  the uppermost unit of grammatical analysis, yet regular
composition of some multi-statement texts justifies  the search for syntactic rules on
higher levels. As regards artificial formal languages of the kind described in Section
1.1, we owe to the science of logic the discovery of the rules that are used by
mathematicians and other scientists to produce proposition sequences called proofs.

 1.3.4. What, in general, is a rule? For  Giddens (1984: 20–21), “rules are
procedures of action, aspects of praxis.” He  recalls Wittgenstein's example from
Philosophical Investigations. A person A (he) writes down a sequence of numbers and
asks another person B (she) to guess successive numbers that would be obtained if she
were to follow the rule that A used to start the sequence. Clearly, B may try to work
out a general recursive formula that will enable her to determine for any n the nth
term of the sequence when terms from 1st to (n!1)th are known. However, the
derivation of such a formula – says Giddens – counts as much as it entails the
practical ability to continue the series of numbers. Any theoretical statement of a rule
is already an interpretation of  it and as such  may “alter the form of its application”
(1984: 23). The reverse is also possible: A user may deliberately apply a rule in an
imprecise way, even if  they know very well  its strict formulation. No matter whether
a rule is under-determined itself or too loosely determines the forms of its application,
for Giddens, it still remains an  intersubjectively identifiable “structural” component
of  the “encounter” between  A and B.

Peter Winch (1990) has raised doubts as to whether the sciences which accept as
evidence the products  of “understanding” perception of meaningful behaviors can
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meet the standards of intersubjectivity required of observation in the natural sciences.
He assumed that the second person interprets the initial sequence and can never be
certain of having correctly recognized the rule followed by the first person because
the latter is by no means forced to state it so as to help his partner keep the ball
rolling. Therefore, neither the observer can assert with certainty that A and B  follow
the same rule. Giddens does not go that far, as he admits that  any “regularly”
coordinated coaction may have outside “structural” foundations. However, he
immediately adds “the theorem of the duality of structure” which states that
“structural properties of social systems are both medium and outcome of the practices
they recursively organize” (Giddens 1984: 25). His “structuration theory” is intended
to be a third dialectical way between “reification” of structure, characteristic of
classical “grand theory” (structuralism and functionalism), and the “opposing error
of hermeneutic approaches and of various versions of phenomenology, which tend to
regard  society as the plastic creation of human subjects.” (1984: 26).

The new  grand theorists who combine dialectics with subjectivism and belief in
human creativity find support for their metatheoretical views in historical descriptions
of the morphogenesis of concrete sociocultural systems. Indeed, social interaction
very often goes on in poorly structured settings in which interpersonal communication
begins from a clash of incompatible “definitions of the situation.” The emergence of
systems of meanings in a social process may become in future the object of third
generation theorizing, yet for now social science should keep away from dialectical
anti-logic as well as psychologistic or constructivistic interpretations of  “subjective
meaning”  (the Weberian attribute of action) and stick with the traditional paradigm
according to which what makes social interaction intersubjectively intelligible and
thus scientifically tractable – besides spacetime, physical aspect of coaction – is the
actors' prior practical knowledge of a fixed semiotic code enabling them and
competent observers to recognize their actions as meaningful. 

1.3.5. “Soft” semiotic systems, seemingly less real than “hard”  natural systems,
exist within “cultural reality” (Znaniecki, Cultural Reality, 1919) which was
rediscovered by Karl Popper as the “third world” (Popper, Objective Knowledge,
1972). Along with the “first world” (animate or inanimate nature) it admits of
intersubjective cognition. Facts from the “second world” (a multitude of individual
worlds of  subjective experience) are intersubjectively communicable only through
their material counterparts in the “first world”  or semiotic representations in the
”third world.” Hence, the sciences which deal  with beliefs, emotions, and attitudes
must draw on data coming from the first or third world.

So does empirical sociology. Does the “social world” contain elementary facts
different from those found in three Popperian worlds? Let us examine the facts
described by means of the statements “A loves B” and “A helps B.” Most if not all
sociologists will recognize these facts as social as  involving two human beings and
possibly something that is going on between them (Wallace 1988). While  biologists
tend to identify A's affection for B with a state of A's organism, behavioral scientists
would rather point out A' s behaviors directed to B that under a given semiotic code
are signs of love. But signs of what? Of an idea embodied in some behaviors
belonging to the first world? Popper allows the presence of Platonic entities in his
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third world, but he claims at the same time  that everything what exists therein is the
work of man. Leaving aside the problem of how far human creativity can reach, we
can safely assume that men are capable of recognizing directed behaviors as falling
under certain categories labeled “love,” “respect,” etc. Clearly, an appropriate
criterion must be intersubjectively communicable so that potential users could learn
it from those who have designed it. Thus, never ending hermeneutic deliberations
over the content of concepts and ideas may be left to arts and humanities.  What the
social sciences need to have in the third world is only the term “love”  – the name for
a definite class of interpersonal behaviors recognized as “manifestations of love” by
those consistently using the term. A behavioral explication of the statement “A helps
B” is even more straightforward.

A's love for B – provided that the meaning of “love” is reduced to expressive
behaviors of A oriented toward B – seems to be more of a fact in A's private
Lebenswelt. The second example better illustrates the Weberian concept of social
action insofar as“A helps B” means that A does something which makes it easier for
B to achieve her goal. To understand the social fact that consists in a special
connection of purposive behaviors of A and B, the observer must take into account not
only the actors' subjective intentions but also objective dependence of events: A's
action co-determines the result of B's action. Another genuinely social fact, A's  power
over B, can also be described in terms of certain first and second world facts having
third world representations. Thus, no matter whether we place “social facts” within
the third world, as possibly did Durkheim, or accept the action paradigm proposed by
Weber and Znaniecki,  we don't need to assume the existence of a specifically social
stuff.

1.3.6. The natural sciences also need the third world, albeit data collection is based
therein on universal semiotic systems. While anthropologists must learn to recognize
culture-dependent distinctions, for instance, “warm” and “cold” welcome,  physicists
can rely on transcultural human ability to detect differences in temperature, verbal
observational reports being replaced wherever possible by indications of measurement
instruments. A recent experiment (reported in Nature 450, 2007) has shown that
preverbal infants are able to recognize helping, hindering and neutral behavior. Thus,
there are reasons to believe that the understanding of human acts has equally
intersubjective foundations as naturalist observation of physical events. 

Nevertheless, natural and social sciences differ with their specific methods for
gathering empirical information. When  a “naive” viewer watches a game being
played, unobtrusive observation of physical behaviors of the players usually does not
suffice to grasp the meaning of  ongoing actions.  For games like soccer, much of
what is seen in the field can be correctly interpreted, provided that innate semiotic
competence covers the capability of distinguishing between involuntary and purposive
kicks. For more sophisticated games like baseball, even interactive observation, or
interrogating the players or competent viewers, may fail. This happened to me during
my stay in the US when I tried to figure out the rules of this game by consulting the
natives. Dissatisfied with their answers that assumed my familiarity with baseball
terminology,  I turned to a naturalized American who told me that his son born in the
US had learned this game by playing it with his peers, that is, through participant
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observation – the method the physicists cannot use to explore puzzling practices of
elementary particles. Unfortunately, the son could not verbalize the rules in a form
intelligible to his father (a mathematician like myself). However, an insider prepared
to take the role of an outsider (say, an American student of anthropology) would
probably be able to translate practical knowledge of baseball into clearly stated rules.

What does it mean to “follow or apply a rule”? For some rules, such as legal
norms or technical instructions, you can't  follow a rule unless you know its statement
that informs you what to do in a given situation. Rules of the kind, which belong to
a piece of social reality under study, should be distinguished from the rules which
have been proposed as part of  a theory that is to account for observed behavioral
regularities. Giddens tends to believe that scientific laws formulated by sociologists
do not differ with their epistemic value from the social laws people apply in their
everyday activities which are regular and predictable due to the use of these laws. He
is right to claim to that some social regularities consist  in “enacting theories.”
However, if a  theory that is accepted by “knowledgeable agents” is taken by the
observer as an explanation of the fact of its being “enacted,” then one is forced to
abandon even the humanistic Weberian variant of the ideal of  nomothetic social
science.

1.3.7. The mainstream sociological metatheorizing continues the campaign against
positivist and postpositivist (Popper, Lakatos, Toulmin) orientation  in philosophy of
science. What is being labeled as “positivism” and criticized is both theory-free
collecting facts and figures about social life and imitating the patterns of doing theory
peculiar to the natural sciences . “In science there is only physics or stamp collecting.”
If there is some truth in this saying attributed to Rutherford, then radical anti-
positivism turns against all attempts to make sociology a normal “positive” science
as much nomothetic as possible. Historically, the label of “positivism” has been
attached to a number of various meta-scientific view of which some (e.g., the idea of
theory-free sense data) deserve to be rejected outright for having little to do with real
science. However, few other views, also considered untenable by many leading
figures of contemporary social theory, are worthy of defense (Turner 1985). What I
mean is the principle of methodological unity of all empirical sciences and that of the
demarcation between empirical sciences and hermeneutic philosophy (Woleński
1989).

In accordance with the first principle, I will regard “direct observational
understanding of the subjective meaning of a given act” (Economy and Society,
Chapter I) as a special kind of observation. It's a plausible interpretation of the
Weberian concept, provided that “subjective meaning” is not understood too
subjectively (as a fact in the Popperian second world) and “meaning” is defined with
reference to a given semiotic system.

The demarcation principle does not forbid making ontological assumptions in
science. The choice of a language for a positive science plays a crucial role in this
matter, as it is the language that determines both what “can be said clearly” and about
what clear statements can be made. The best way to get rid of existential troubles is
to show how entities that are to be studied in a given discipline can be constructed.
Once this book is to be about  exchange networks, I have already given (at the end of
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the previous section) a description of how to construct a social action system of this
very special category. To my knowledge, this particular exchange network  has not
been studied yet in a laboratory, but many other systems  of the kind have been. “The
taboo against believing in the existence of a social entity is probably most effectively
broken by handling this entity experimentally.” I would add to Kurt Lewin's
statement, quoted after Group Dynamics (2nd edition, 1960, p. 18), that this purpose
can also be achieved by locating natural specimens of social entities.“Groups are
inevitable and ubiquitous” – we read in the same  source (p. 34) – yet of course raison
d'Ltre of any nomothetic science may not be high  frequency of “natural” occurrences
of the entities to be studied.

1.3.8. Let me return again to the question of what are rules. If you analyze various
concrete examples, you will arrive at the conclusion that every rule is characterized
by conditions of its applicability, the type of required input (the input to an inference
rule is a finite set of properly structured sentences called premises), and the type of
intended output (in our logical example, a sentence called conclusion). To generate
the output, which does not need to be known in advance nor uniquely determined, one
has to process the input, that is, to perform the operations specified in the statement
of  a rule. Under such a broad  understanding, the term “rule” is the generic term for
grammatical rules (in particular, production rules in phrase structure grammars),
rules of games, instructions and regulations, and many other types of rules.

Rules are typical “inhabitants” of the Popperian third world. However given with
the “humanistic coefficient” (the term coined by Znaniecki to describe the anchoring
of intersubjective  “cultural reality” in “human reality”), they can be studied in the
absence of their actual or potential users. For example, one doesn't have to interview
any voter to examine voting rules. Let us formalize this concept by representing the

1 n i iinput to a voting rule as any vote configuration v=(v ,ÿ,v ), where v =1 or v = !1
depending on whether ith group member votes for or against a proposal (under this
particular formalization, abstentions are counted as votes against). The result of
applying the rule to v, or the outcome of the vote, will also be coded as 1 or !1, with
1 now standing for the acceptance of the proposal by the group. The complete formal
definition of a voting rule – constructed as a mapping F of the Cartesian product of
n copies  of {1,!1} into {1,!1} –  is obtained by imposing on F certain  meaning
postulates.

The first postulate, F(1,ÿ,1)=1, states that whenever all group members vote for a

proposal, the group as a whole respects their unanimous will. To formulate the second

postulate, also formally rendering another a principle of democratic decision-making,

i iconsider two vote configurations u and v such  that  u #v  for  i=1,ÿ,n. This relation

written as   u#v means that all who voted for a proposal under  u will vote for it under

v, so that v may differ from u only in that some of those who did not vote for the

proposal under  u changed their mind. The second postulate has the form of the

implication: if  u#v, then F(u)#F(v); in particular, if F(u)=1, then F(v)=1, that is, a bill

that is passed under a given  vote configuration will also be passed if it gains additional

supporters. To state the last postulate, suppose that the objectors to a bill passed under

configuration v want to push through a new bill inconsistent with old one. Since the

supporters of the old bill will vote against the new one, the new vote configuration will
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ihave the form !v, where ith coordinate of !v equals !v .  To make it impossible to pass

contradictory laws, F must satisfy the condition: if F(v)=1, then F(!v)=!1.

These postulates are met, in particular, by the unanimity rule (F(v)=1 if and only if

i jv =1 for all i) and the dictatorial rule  (for some j, F(v)=v , that is, the will of jth group
member always becomes the will of the group). For group size larger than 2, besides
these two simplest there exist many voting rules of which  the best known is the

1 nsimple majority rule (F(v)=1 if and only if  v +þ+v >0, that is, the supporters of a
proposal outnumber its opponents). Suppose that the latter rule is used by an assembly
to decide on which of every two out of three candidates x, y, z  for an office should
be elected if the third resigns. Technically, the votes the group has to count to find a
winner in each pair can be collected by asking every member to agree (1) or disagree
(!1) with three statements “I prefer x to y,” “I prefer y to z,” and “I prefer x to z.” The
group will prefer x to y by virtue of the simple majority rule if there are more voters
who prefer x to y than those who don't. Assume that the members of a 3-person
assembly vote each in accordance with their own order of preference. If the three

1 1 2 2 3 3 iorders are x> y> z, y> z> x, and z> x> y (x> y stands for “voter i prefers x to y”),
then the group prefers x to y and y to z, but contrary to the expectation z is preferred
to x. Thus, the collective choice relation determined “democratically” from transitive
individual preferences is not always transitive.

1.3.9. David McFarland (see Srrensen 1978: 347) traced back the history of
mathematical sociology to the discovery of this fact by Condorcet in 1785. This and
all later developments in  the  theory of voting belong to  social mathematics, a still
growing area of mathematics that draws its inspiration from informal social theorizing
or methodology of social research. Another example  given in the introduction to Part
I (equal average number of sexual partners in men and women) also confirms the need
to distinguish between social mathematics and mathematical social science. The
former  offers to the latter a range of tools which can be used to produce formalized
empirical theories. The borderline between these two interactively related  fields
remains fluid. Thus, many logically possible voting rules have so far been analyzed
only by the mathematicians. One never knows in advance which of them will ever be
implemented and thus will come within the scope of historical and sociological
investigations like those voting rules which have already been used by real
assemblies.

I used the mathematical theory of voting to illustrate the relationship between

mathematics and the social sciences in connection with my recent research (Sozański

2010) inspired by the dispute over designing a  voting rule for the Council of Ministers

of the enlarged European Union.

Sociologists attached to the old positivist comparative method will look for
generalizations concerning historical use of voting procedures. Those having a
predilection for experimental method will be more interested in testing certain general
and universal hypotheses, say, the one which states that every group is more likely to
adopt the dictatorial rule than the simple majority rule if the decisions to be made
concern the defense against hostile environment.
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1.3.10. Voting rules provide an example in which the output of applying a rule is
uniquely determined by the input. For many types of rules, it is not required of  the
input-output relation to be a mapping. For example, the code of criminal law may
allows a judge to choose one from a range of punishments admissible for a given
crime. Similarly, in a game like chess (a two-person game in extensive form), the
player bound to make a move in a nonterminal position P is free to decide on which
position  P'  will become the next position in the match, his choice being limited to
positions immediately reachable from P by virtue of the transition rules.  If P'  is also
a nonterminal position, there comes the turn to act for the other player, and so forth
until the game ends with the transition to one of  terminal positions to which
additional rules assign the outcomes of the game.

If the game ends with A's victory and only a sequence of moves is known, you
must be cautious about concluding that A has turned out a better strategist than B. As
occasionally happens in sport games, A may well have deliberately played so as to
help B win. In some social action systems the actors are supposed to pursue certain
individual goals and/or a collective goal. The intentional meaning of some acts
consists in their being recognized by the actors and the observer as means to certain
ends. In other systems, the actors' goal-orientation, or their will to bring about
definite outcomes of the interaction process, and the meaning of their behaviors
(directly understandable in the context of a given semiotic code) are separated from
each other. Thus, if you notice that  A's move gives B an opportunity to take A's queen
in the next move, you will not say that A has broken the rules of chess, but rather
interpret A's move as a mistake or an intentional act, a sacrifice to get a strategic
advantage over B or a  help to B (if you suspect that A wishes B to win).

Direct understanding may involve attributing intentions to the actors. For
example, an observer of a soccer match,  interpreting a kick of the ball, say, as a shot
on goal or a pass, takes into account the kicker's intention along with the trajectory
of the ball. Motivational understanding, called by Weber “explanatory
understanding,” is always aimed at revealing subjective motives behind
intersubjectively (semiotically) meaningful behaviors or sequences of  behaviors. If
action chains occurring in a social action system are long and not marked by clear
directionality (means-end connections are far from being obvious), a social scientist
who wants to understand a given course of action may find it useful to ask the actors
themselves to enlighten him about their motives.

Sociologists are divided on the issue of  validity and reliability of what the actors
present as bona fide reasons for their conduct. Anti-positivists readily rely on of this
kind of data, but naturalistically oriented social action theorists,  Pareto being their
most prominent representative, tend to perceive declared motives as naive or
misleading justifications having little to do with real “forces” that make people start
or continue their activities (note that, etymologically, “motive” means what causes a
motion). While Pareto-sociologist found it necessary to classify these forces into
certain types (“residua”), the present “economic approach to human behavior”
(Becker 1976, Chapter 1) and related orientation in sociology known as “rational
choice theory” (Coleman 1990) avoid handling motivation in terms of substantively
defined drives, but rather try to build a general theory of human agency on the sole
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formal assumption that “Acting man – as Ludwig von Mises put in his treatise on
economics (Human Action. 3rd revised edition, 1966, p. 13) – is eager to substitute
a more satisfactory state of affairs for a less satisfactory. His mind imagines
conditions which suit him better, and his action aims at bringing about this desired
state.” Economic agents who use their subjective preference relations to compare
imaginable states of affairs share just one drive that is defined quite generally as the
will to be better off. Technically, it is assumed of the actors that they assign numerical
utilities to the events in their common environment and seek each as good as possible
outcomes for themselves. The utilitarian view of motivation can also be applied to
goal-oriented action sequences, provided that the actors are able to assess the costs
of actions perceived as means to more distant ends (“Costs are equal to the value
attached to the satisfaction which one must forgo in order to attain the end aimed at.”
Ibid. p. 97).

To formulate and solve various utility maximization problems (see a sociological
echo in Part V of Coleman 1990), economics had to employ differential calculus (the
branch of mathematics which was once invented to formalize the theory of
mechanical motion) and thus became the first social science which admitted
mathematics to the heart of  mainstream theorizing. Curiously, the author of Human
Action had a deep distrust of the mathematization trend in economics. His attack
(Mises 1966: 350–357) on econometrics (statistical analysis of real life data) and
mathematical theories of market equilibrium stemmed from the belief  that the
necessary condition for applying mathematics in any science are constant relations
between quantitative variables, the condition that is not met in the field of human
action. Mises and the author of another bible on action (The Structure of Social
Action, 1937) Talcott Parsons did not anticipate the role a new mathematical
discipline, game and decision theory, were to play in the sciences of action.

Nevertheless, one should agree with the masters of nonmathematical economy and
sociology that there is no reason to expect from mathematics anything but to supply
instruments to describe the shape of a regularity found to exist in a piece of non-
mathematical reality. In particular, it is not within the methodological competence of
mathematics to render the difference between a pattern that consists in “enacting a
theory” by “knowledgeable agents” and a similar pattern arising from the coaction of
a set of decision-makers each having limited knowledge of the situation and no
intention to co-produce a regular behavioral arrangement.

1.3.11. Giddens' typology of “generalizations” has a counterpart in economics, the
opposition  between command economy and market economy. In a market  system,
economic agents freely negotiate exchange rates in transactions among one another.
The same agents, if for some reasons they have to act in an economic imperatively
coordinated association (Dahrendorf's translation of Weber's Herrschaftsverband),
will adopt the exchange rates dictated by the theory they are told to “enact.” In a
command system, the actors behave “theoretically” for fear that they would be worse
off if they did otherwise. In  a market system, each of them can improve his own
situation through interacting with others, which results in the formation of theoretical
(equilibrium) prices. In both systems, the interaction process takes place in a
structured environment. In the market case, “freedom of choice” is institutionalized
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by means of definite rules concerning legal possession, production and exchange of
valued resources. “Only within the frame of a social system can a meaning be
attached to the term freedom.” (Mises 1966: 279).

The truth, rather obvious for sociologists (Willer 1985),  about social-structural
scope conditions of the laws of market economy has long been overlooked by most
economists. “Incredibly, it is only in the 20 of these 200 years [of  the history of
economics] – as Vernon Smith noted  (Smith 1982: 952) –  that we have seriously
awakened to the hypothesis that property right institutions might be important to the
functioning of the pricing system!” Smith demonstrated himself  that not only
property right institutions do matter. His “experimental handling” of auctions in
simple markets has undermined the widespread conviction that economics like
astronomy  or meteorology has to rely on observation of real-world processes. “My
view – wrote Smith (1999: 197) – is that the reason economics was believed to be a
nonexperimental science was simply that almost no one tried or cared.” 

The Nobel prize for Vernon Smith  (2002, with  Daniel Kahneman) gave moral
support also to the sociologists who like Szmatka and myself tried and cared to do
laboratory experiments on exchange, unaware of experimenting that was going on in
economics. Experimental research (unknown in turn to economists) on exchange
systems with network structure was initiated in sociology at the end of 1970s by
Richard Emerson and his collaborators (Cook and Emerson 1978) to be later directed
to a new path of development by the Elementary Theory group (Willer 1987;
Markovsky, Willer and Patton 1988; Szmatka 1997). Classical economics, which has
always focused on free exchange of goods and services, has paid  little attention to the
systems in which social constraints forbid some agents from making some physically
possible and mutually beneficial deals.  In a free market, every two owners of valued
resources are allowed to exchange them on the terms that both negotiating parties
voluntarily accept. While in such a socioeconomic system the agents' willingness  to
achieve greater satisfaction remains the only “efficient cause” of any bilateral
resource flow, the outcome of the systemwide negotiation process takes a
theoretically predictable form if the actors' right (easily alienable as the history of
20th century totalitarian systems has shown) to “pursue happiness” is limited  by the
prohibition “do not take what is not given” (the Buddhist precept corresponding  to
“thou shalt not steal”) as well as  positively defined by the freedom to give and  take
(as well as to refuse to take)  what others give and to make binding agreements on
bilateral resource flows. 

In accordance with  the private property rule, any legal change in the allocation
of control over resources can take place only through voluntary give-and-take actions
of the actors having each exclusive control over some resource. The economic
reciprocity rule forces each party of an agreement  to give up its resource to the other
party as soon as the latter has fulfilled its part of the contract. These rules constitute
the fixed  institutional ground for the functioning of any exchange system. Both free
markets and exchange networks can also be endowed with  the rules that establish
legal ways of negotiating and concluding transactions. Smith (1982) made these  rules
a variable social-structural factor subject to experimental manipulation. Myself, I
realized  theoretical significance of negotiation  rules when I repeated (Sozański
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1993b) an experiment of David Willer (1987, Chapter 6) to test his predictions as to
the functioning of a social system in which a “manager” (in abstract theory language,
an actor who occupies the “central” position connected to a set of “peripheral”
positions) negotiates with candidates for vacant jobs financial terms of their
employment. For the system in  which there are as many candidates as vacancies, a
reward  hierarchy is established by enforcing the rule that the maximum pay the
manager may award to the next applicant must  be lower than that the pay awarded
to the first one. Such a structural constraint makes peripheral actors compete for being
first to reach agreement with the central actor, which results in accepting a pretty  low
pay by the winner of the auction to the benefit of the manager whose payoff depends
on curbing payoffs of the employees. Let me quote the conclusion from the English
summary of my paper in Polish. 

“[In the replication of Willer's experiment] … the power advantage of the ‘center’ over

the ‘peripherals’ has been observed, however, to a lesser degree than in the original

experiment … the difference can be explained in terms of different modes of

negotiating. The rules (imposed by the experimenter or adopted spontaneously by the

subjects) which organize the negotiation process can enhance or weaken the

competition among peripheral actors.”

In my experiment, the “manager” had to hear initial demands of all “applicants” and
propose himself the pay for the next person to be hired. Technically, every negotiation
round began from a “complete bidding” in which all 7 subjects (6  peripherals and the
center) were called (by the computer program) one by one in a random order to
present their proposals. Under such a negotiation protocol (Sozański 1993b:
249–250), there appeared “class solidarity” among the peripherals,  counterbalancing
to some extent within-class competition. While in Willer's  experiment the
“applicants” went on outbidding one another, in my experiment they  often demanded
the same pay, accepting the uncertainty of  being hired on the terms they defended
collectively.

1.3.12. Smith preceded his paper (1982) on experimental microeconomics  with
the motto (from Agassiz)  “Study nature, not books.” I studied both, which
encouraged me to compare Giddens' bookish metatheorizing with the viewpoint on
social regularities that grows out of the practice of experimental research. Our
colleagues from the department who practiced “social theory” or historical studies,
seeing Jacek Szmatka and me doing experiments  on  abstract exchange systems,
commented on our activities in two ways roughly corresponding to Giddens' two types
of social regularities. Some, impressed by detailed instructions we read to our
experimental subjects, blamed us of training them to behave theoretically and thus of
misconstruing theory testing; others, who took notice of standardized conditions
leaving little room for  creative “defining  the situation,” criticized us for treating the
subjects like rats, or as Giddens put it,  as “agents ignorant of the circumstances which
effectively act on them.”   

It is true that the subjects in any experimental social system are taught and induced
to act in accordance with well-defined rules. Once human actions like any other
events in the empirical world are subject to the operation of physical, biological,
psychological, and possibly social (inter-organism) laws, the sole aim of an
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experiment may well be to verify if a theoretically designed  way of coaction is
feasible. Let me call social praxeology the empirical science (which should not be
confused with Mises' “aprioristic”  praxeology) that is to examine empirical
possibility of implementing logically possible systems of social rules. The need for
a deeper knowledge of natural limits on human creativity in this field is growing
because  “…the primordial institutions around which societies have developed are
being replaced by purposively constructed social organization.”(Coleman 1990: xv).

In network exchange experiments, the enforcement of a social regularity of the
first type (negotiation rules and communication channels) is never an end in itself.
Apart from establishing definite constraints on and opportunities for negotiating
transactions, the experimenter has to arouse in the subjects an appropriate motivation
(the desire to earn valued resources) in order to set the “interaction machine” in
motion. Once structural and motivational scope conditions of the theory being tested
are met, it remains to check if actual  group process running in the space of possible
coactions yields theoretically predicted outcomes.

“Structure” alone can never force “agents” to choose definite actions. By saying
that a  regularity of the second type is produced by the actors themselves, we mean
that they try to achieve the given “nonstructural” goals, acting within the given
structures of which they have complete or partial knowledge, and the theoretical
pattern, predicted to emerge from their coaction, actually arises whether it is or is not
known to those who are producing it. If the subjects come to know the predicted
outcomes of their coaction, they may attempt to affect the result of the experiment.
How to interpret the case in which the order found to be produced by “naive
experimental subjects” does not occur when the experiment is repeated with
“knowledgeable agents”?  Should we conclude  that social regularities of the second
type lack the “necessity” that is attributed to the “laws of nature”? Those who know
that the processes of  market exchange bring about income inequality cannot change
the “laws of economy” simply because they do not like some unintended
consequences. However, as we know from 20th century history, in some
circumstances people can destroy structural and/or motivational scope conditions
under which these laws operate. In experiments, the most likely cause of the
“knowledge effect” is not knowledge alone but an extra  “force” (say, the subjects'
ambition to prove their superiority over ignorant rats) that suppresses or interferes
with the required motivation.

While it is fairly easy to construct a laboratory social system and  enforce
conformity with the rules, it is more difficult to make sure that the subjects actually
strive to achieve the goals they are enjoined to pursue. For example, if  each person
reads in the instructions:  “Your goal should be to get the best score that you can for
yourself through arranging the transactions most favorable to you” (Willer 1987: 121)
and a group member is the same time kept informed throughout the negotiation
session about the scores of other members, then the observed distribution of earnings
may well reflect the subjects' allegiance to an ideal of distributive justice. Indeed, the
first sociological experiment on network exchange (Cook and Emerson 1978)
confirmed the significance of equity considerations. 
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1.3.13. An analysis of the foundations of experimental social science leads to the
conclusion that more or less complete knowledge the actors have of the environment
in which they coact is an essential factor in both types of social regularities. The
distinction between informed enactment of a theoretical scenario and  informed
coaction producing a behavioral pattern differs from dialectical opposition between
proactive knowledge and reactive ignorance. Giddens' conception of human agency
apparently departs from the understanding of human action in economics and 
classical sociological theorizing on social action. According to the traditional point
of view that was once labeled by Parsons (1937) the “voluntaristic theory of action”
any action involves a  choice between two or more behaviors which all make sense
in the context of the semiotic “superstructure” of a social action system. The task of
the social scientist is then to answer the question of why one of them was actually
chosen by the actor. In respect to a regularity of the first type, what is to be explained
is why the actors  choose to follow rather than break a social rule.

A purely “voluntaristic” explanation of “enacting a theory”  assumes that the
actors  behave in accordance with the theory they know because they want it to be
true. Having realized that the theory's  truth hinges on their voluntary conduct, they
act accordingly and construct thereby an empirical model for the theory that describes
their most preferred form of collective life. For example, the social order in a
Benedictine monastery stems from the monks' will to live together according to the
Rule (designed by the founder of the order).

The voluntaristic conception of action takes for granted that the actors make use
of their knowledge in pursuing their goals. Knowledge and motivation, however
interrelated, should be conceptually separated from each other, similarly as rules and
practices; otherwise  one would have again to abandon science for dialectics. The
actors' convictions as to the nature of social rules play a crucial role in explaining the
persistence of theoretically designed social systems. Under the Marxist “activistic”
interpretation of  command economy, “knowledgeable agents” are assumed to believe
that the rules they consciously follow are objective “laws of history.” Both “history
makers” (those who claim to have discovered these laws) and ordinary “believers in
historical necessity” yield to the “rule” of the rules because they know that any
individual breach may only result in negligible disturbances in the order they maintain
with their actions. Since the possibility of deviance is not ruled out (otherwise this
approach ceases to be  “activistic”), one needs to point out the causes for conscious
conformity. If we assume that the actors choose to comply with the rules because they
are committed to certain values, then we will get a regularity which resembles the one
designed by St. Benedict save that unlike the inventors of command economy he
perceived his Rule as an implementation of  a divine order.

1.3.14. “Value” has always been one of few favorite concepts of sociologists. To
define this term, let me first recall that the actors, by assumption, are able to recognize
meaningful actions, situations, and results. Evaluation is a higher-level semiotic
function which  presumes descriptive semiotic competence. We will speak of a value
if one of two meaningful categories has been marked as the “positive pole” preferred
to the other pole by the users of the semiotic code. In order not to rely solely on
declared preferences, we add the condition that values must find expression in some
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behavioral choices sufficiently many actors actually make. For instance, suppose that
meaningful verbal behaviors are classified into “telling the truth” and “telling a lie.”
“Truthfulness” is a value insofar as the plus sign is attached with “telling the truth”
and this behavior is observed sufficiently frequently. Nevertheless, once we know that
people too often happen to lie, the relationship between values and action needs
further clarification.

Let me make a digression here to supplement the methodological characterization of

the social sciences. The epistemic rationale for the use of interview, which is the main

method of data collection in empirical sociology, is the assumption that respondents

answering questions asked by the interviewer, tell the truth unless they have some

special motives (to be disclosed by the researcher) for doing otherwise.    

While the physicists are delighted at the unity of the physical world, the social
scientists must get to like the plurality of value codes and internal diversity
characterizing many of them. The physicists need just few kinds of forces (gravitation
being the one best known to laymen) to describe the behavior of  many physical
systems. This can be an uneasy task even for simple systems with just few
components (the so called “three-body problem” is an example). In the sciences of
human action, even the behavior of a single agent is often very difficult to predict,
first of all, whenever two different values prompt different actions in the same choice
situation, for example, when an actor chooses between selfish and altruistic behavior
in a situation where the benefit of a group member is in conflict with the welfare of
a group as a whole. Obviously, the actor must be committed to both values in order
to experience a conflict of values.

The source of  complication supérieure of real-world social systems lies in the
workings of human motivation rather than in structural complexity of these systems.
If the value code has a hierarchical structure (some values are considered “higher”
than others), then the actor knows which action one ought to choose  facing a conflict
of values. While  moral philosophers readily see in any choice made in such a
situation an act of free will,  “social physicists” interpret the choice as determined by
unequal strength of two conflicting motives, thus eliminating the actor's  will as a
third  factor. If two motives are equally strong, it seems quite natural to assume that
there is a  “judge” whose onerous duty is to resolve the conflict of values. Historians
formulate their ex post motivational explanations of decisions taken by political
leaders  in either manner. The task of a social scientist is to predict the actor's choice
before it is made, which requires that the actor's value-orientation, or his actual
commitment to the values which make up a given value code, be known in advance.

The actors, by reporting to one another on their evaluations of their own and
others' actions, reveal and confirm their attitudes toward values. Their communication
becomes then something more than exchange of information on facts. However,
making practical choices, especially resolving conflicts of values, is another matter.
Heroes are respected and admired but rarely imitated. The acceptance of values
declared by the actor should not be equated with his value-orientation conceived as
a factor which accounts for his actual behavior.
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1.3.15. The form of social order such that the actors' value-orientation perfectly
reflects a common  value code has always attracted attention of sociologists, as
evidenced by the concepts such as Durkheim's “mechanical solidarity” or Weber's
“legitimate order.” Parsons emphasizes the importance of value consensus for any
form of social order. His  “sociologistic theorem” reads in Fararo's formulation
(Fararo 2001: 97): “A necessary condition for social order is that the ultimate ends of
action of the various actors form, to some degree, a common value system.”

Does this theorem apply to social action systems  in which the actors are coerced
into following the rules? Before we examine how coercion is related to values, we
must recall Weber's fourfold typology of actions (Economy and Society, Part I,
Chapter I, Section 2). A behavior prompted by an inner impulse or a learned routine
is referred to as “affectual” or “traditional” action if the actor is aware of the
possibility to behave otherwise. The actor can also consider a range of alternative
behaviors, compare their anticipated effects and choose an optimal  way to attain a
given end, in which case his action  is called “instrumentally rational.” A “value-
rational” action has no other end than to confirm the recognition of a value, regardless
of the consequences the actor's deed may have for himself and the world. The end that
is automatically attained by performing an appropriate action is perceived by the actor
as a response to a religious or ethical imperative rather than immediate satisfaction
of a mundane desire. Without denying the need for a distinction between “moral”
obligations and “natural” drives, I believe that in scientific but humanistic
explanations of human action both can be uniformly represented as functionally
equivalent motives. Any motive, regardless of its organic or nonorganic origin, can
be defined as commitment to a value,  a variable that characterizes an actor in a
situation.

In many situations, the actor's behavior results from the interplay of  two motives
working in opposite directions.  Conflict of values  is inherent in sacrifice and action
under coercion. Suppose first that someone devoted to his country has been called  in
wartime to join the army as a volunteer. His consent is a sacrifice if he knows that his
refusal will have no other consequence for him than unpleasant awareness of having
failed  to do his duty for his country. Notice that the dilemma of a volunteer differs
from that of a soldier-slave. When  the latter hears the order to advance, he knows that
a special squad will follow the attacking troop and shoot at those who retreat. Since
both alternative responses to the order have equally dangerous consequences, even
very weak patriotic motivation is enough to produce obedience. The need to measure
the strength of each motive arises only in a situation in which there is a conflict of
values.

Imagine in turn a witness in a court of law who received a message that his life is
put at risk if he tells the truth. If the witness who values both truthfulness and his own
life agrees to give a false testimony, he is said to act  under coercion. He knows that
ignoring the threat may have a deadly consequence for himself, but what will then
actually happen will depend on others. He also knows that if he yields to the threat,
the only trouble he will have to endure will be the remorse for the betrayal of accepted
value. On the one hand, the actor anticipates and evaluates possible  external events
that may follow his action,  in particular, possible responses of other actors. On the
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other hand, the actor realizes that he will feel discomfort or distress if he chooses to
act in contradiction with his commitment to a given value. The desire to avoid this
unpleasant inner experience can be the only motive for compliance with the rules; in
such a social system,  human  monads act “under the starry sky” each according to the
“moral law within them.” However, sociologists rightly claim that the internal
motivational system needs an external underpinning provided by the awareness that
a given value orientation is shared by many if not all who approve of a given value
code. It is unlikely that a scholar will commit plagiarism if he or she knows that other
scholars unanimously condemn this practice, as it were, being an unintended
consequence of the devotion  to another common value of the academia (“publish or
perish”). However, the mere exchange of value judgements does not suffice for the
maintenance of value-consensual social order. This kind of social order may not
persist unless deviant actions meet with punishing responses of other actors.

 A sociologists brought up in the Durheimian tradition will describe a “social fact” of

the kind by saying (I will also use this parlance but for stylistic convenience only) that

the group punishes its members instead of saying that group members punish other

members “in the name of common values” or “on behalf of a group.” To define an

“action of a group,” one needs to specify individual actions of its members and point

out the rules the group members apply to coordinate their conduct or assign meaningful

results to certain configurations of their actions, as illustrated by an already discussed

example (passing a bill by an assembly).

Durkheim referred the concept of “mechanical solidarity” both to large social systems
where value-consensual social order rests on the enforcement of “penal law” and to
smaller and simpler  systems in which the actors comply with the rules for fear of
social isolation. It is the threat of being shunned by their peers that can effectively
deter scholars from using illegal means to attain the goals valued by their  “tribe.”
Moreno had good reasons to see in positive affective bonds the ultimate basis of
social order. People who highly value their interpersonal relations tend to act in
accordance with other shared values. The punishment you will suffer when you lose
your friend because of your neglect of a value to which he or she is strongly attached
differs, to be sure, from a penalty  imposed by the court of law, but in either case you
are coerced to comply with the rules, that is,  no matter whether you do or do not
consult your  “conscience” as to how it would  react to noncompliance, you choose
the action that will allow you to avoid being punished by other actors.

1.3.16. Any value-consensual social order is sustained by two motivational
mechanisms  working in concert, internal and external. The role of coercion seems to
be relatively greater if the same motives which control the choice of action within the
limits determined by the rules defining legal means of  attaining goals push the actors
into violating these rules . The same greed which makes people seek profit from legal
transactions induces the same people to “take what is not given” or break the
reciprocity rule, given an opportunity to do it with impunity. While “inner-directed”
individuals, who behave as dictated by the value code in which  honesty takes priority
over self-interest, will resist the temptation to act illegally regardless of how likely is
the prospect of being punished, those who have not been trained to constrain their
natural desires from inside must  face the threat of losing legal opportunities to satisfy
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these desires. Thus, in maintaining social order in an exchange system, coercion can
compensate for the lack of prior socialization of actors. 

Revolutionary theorists have declared their intention to eliminate coercion in
socioeconomic systems they designed as an alternative to free markets,  yet as soon
as it became clear that some collective values they promoted  (such as “fair”
allocation of benefits) were unlikely to gain general approval, they resorted to
violence to establish and enforce new social rules for production and distribution of
material resources. As a consequence, sociologists have to acknowledge the existence
of social systems for which the sociologistic theorem does not hold true, that is,
compliance with certain social rules is ensured despite disagreement as to
fundamental values behind these rules. For example, in an exchange system with a
taxation rule every actor has to give up a definite part of his profit from a transaction.
Some pay the tax  because they feel obliged to provide resources for common use,
while others contest the tax duty as expropriation and pay solely for fear of
punishment.

1.3.17. Any action under coercion, being always a “social action” according to
Weber's well known definition, can be called “doubly social” when an actor B not
only takes account of  the expected behavior of a concrete actor C or unspecified
others, but responds to the actual behavior of another actor A (in particular, A=C).
Many sociologists follow the path taken by Durkheim and Parsons and  find it
necessary to derive the connections between social actions of  A, B, and C  from
certain tendencies (such as “functional imperatives”) which operate on the system
level and determine “from above” social regularities on the inter-actor level.
Sociology's main subject matter then become “vertical” relations between individuals
and a social whole rather than  “horizontal” relations in a set of actors  mediated by
the actors' competence in a common semiotic code.

The power relation is probably the most important relational social form. One can
agree with  Giddens (1984, p. 283) that in social science “There is no more elemental
concept than that of power… Power is one of several primary concepts of social
science, all clustered around the relations of action and structure.” “In its broadest
sense, interpersonal power refers to any cause of any change in the behavior of one
actor, B, which can be attributed to the effect of another actor, A.” (Zelditch 2000:
1456).  In a narrower sense, “power” (Macht) was defined by Weber (Economy and
Society, Part I, Chapter 1, Section 16) as “the probability that one actor within a social
relationship will be in a position to carry out his own will despite resistance,
regardless of the basis on which this probability rests.” Coercion, however not
mentioned explicitly, seems to be implied by B's “resistance” that A must overcome.

Power is not only most “elemental” concept but most mysterious if it is thought
of in terms of the interplay of two wills. Leaving aside the problem of  how A's will
affects B's will so that B actually does what she is told to do by A, let us see what  can
be said about power in a purely behavioral language. First, power differs with its
asymmetry from the exchange relation in which either party can initiate interaction
leading to a transaction with the other party. The power of a professor A over a
student B means, in particular,  that A has more occasions than B to set a trap for B in
which B has to choose between doing and not doing what A wants her to do.
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Secondly, the actor who has started interaction has more control over its course, even
though he may never be a hundred per cent sure of attaining the intended result
because, as Weber stated explicitly however informally, the relationship between the
actions of the two parties is probabilistic. 

“Probability” was given a more technical meaning by Robert Dahl whose concise
definition of power (“A has power over B to the extent that he can get B to do
something that B would not otherwise do.” 1957: 202–203) is no less often quoted in
sociological literature. Let a and b denote, respectively, A's behavior which imposes
a choice situation on B, and B's behavior preferred by A in this situation. Let a' and
b' stand for the actors' alternative behaviors in the respective situations, or any
behaviors recognized as failure to do a or b. If A is given sufficiently frequently an
opportunity to perform a,  we could count how often each of two events A:a  and A:a'
(A does/does not do a) is followed by the event B:b, and estimate conditional

1 2probabilities p =P(B:b/A:a) and p =P(B:b/A:a'). A has power over B (Dahl 1957: 204)

1 2 1 2insofar as  p >p ;  the amount of  A's power is measured by the difference p !p .
However, positive statistical association of the events A:a and B:b is common to
various forms of behavioral dependence. Suppose that B positively responds to A's
call to join the army as a volunteer. Although B does “something that she would not
otherwise do,” we  would rather say that A has influence on B rather power over B.
Hence, Dahl appended three limitations to his formal definition of power. First, the
event  A:a must precede in time the event  B:b, second, there must be a “connection”
between A and B, but for the sake of generality the  meaning of “connection” was
deliberately left unspecified. Dahl's third condition turns out  most restrictive. While
the formal probabilistic criterion does not require that a and b be anyhow related to
each other, in the case of power, action a must have the form of a command to do b
underpinned by a threat of punishing B for failure to do b.  For example, a professor
orders a student to read a book before the exam and makes her believe that otherwise
he will fail her. The student  who knows the list of required readings is likely to read
the book without being warned against the consequences of ignoring the professor's

2 1 2reminder (p >0). A significant increase  (p !p >0) in the probability that B does what
A wants her to do  results from the threat that A utters or B guesses at. Notice that A
could obtain the same effect by promising B to  raise her grade on the exam if she
reads the book. However, unlike the decision to ignore A's threat,  the decision to
ignore his promise can make B worse off than she was before A initiated interaction
with her. According to Peter Blau (1964: Chapter 5), it is coercion that distinguishes
power from other types of behavioral dependence.

B's  proneness to obey A's order can be derived from three premises: (1) B
believes that A will carry out his threat; (2) B's prefers a chance of success to certain
failure; (3) B applies a rule of rational action to (1) and (2). These premises say that
B is a rational actor having certain preferences and beliefs. Actor A appears only in
the first condition. His “agency” in the relation with B consists in the ability to impose
on B a choice between b and b' and to make B accept certain claims about the
consequences of B's actions. The case where A promises B  a reward for compliance
can be analyzed similarly.  On the other hand, A's successful attempt to induce B to
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sacrifice something  for her country rests of A's ability to modify B's preferences by
arousing or enhancing B's commitment to patriotic values.

1.3.18. Thus, our analysis of the ties between social actions in a two-actor system
sheds light on how an actor A can bring about a definite action of another actor  B: A
must be able to create a choice situation for B and appropriately shape B's beliefs
and/or value orientation. How can A convince B that his threat is true? More
generally, how to make a human being believe that a claim he can't immediately verify
is true or at least likely enough to serve as a cognitive basis of action? Biologically
oriented behavioral scientists will try to decipher brain structures responsible for
cognitive functions. Sociologists will be more interested in how the fact that B
believes in what A has said depends on a social  relationship between A and B.

The “connection” between the professor and his student in Dahl's example
provides them  with  the opportunity to communicate between each other. However,
this opportunity is only a prerequisite of A's power over B. Communication and
behavioral dependence merge together in Wittgenstein's late philosophy – the source
of inspiration for the “linguistic turn” in contemporary social theory (Giddens 1984,
Introduction). The list  of several “language games” we find in Philosophical
Investigations, remark 23, begins from “Giving orders, and obeying them.” More
reflections on power appear in remarks 431 and 505. 

 “There is a gulf between an order and its execution. It has to be filled by the act of

understanding … Must I understand an order before I can act on it? – Certainly,

otherwise you wouldn't know what you had to do! – But isn't there in turn a jump from

knowing to doing?”

In Wittgenstein's philosophical sociolinguistics, “knowing” and  “doing” are  parts of
one communication competence. Weber took for granted that a kind of semiotic
community must exist between two actors in order that one of them can impose his
will on the other. He would explain B's obedient response to A's order by pointing out
– as two possible determinants of the “probability” that an order, once understood,
will be obeyed –  either actor A's personal influence (charisma) or – in the case of
“legitimate power” –  A's  “right” to give commands to B and B's “obligation” to
execute them, both assigned impersonally to the positions A and B  occupy in an
“imperatively coordinated association” (Herrschaftsverband). Since we can't observe
positions but only some action sequences, we must infer – from what the actors
actually  do and how they comment on their doings –  which of them is the superior
and which is the subordinate. Having noticed that the event B:b always follows the
event  A:a, we incline to look at B's behavior (verbal or non verbal)  as the result of
applying a rule analogous to the grammatical rule “forcing” a speaker of English to
put a “direct object” past a “transitive verb.” What makes a difference is not the
nature of signs that make up the “string”  ab but its being produced  by  two different
“speakers.”

1.3.19. With this remark, our inquiry into the foundations of social science has
returned to its starting point – the linguistic conception of social regularities.
Certainly, there are many areas of the social world where semiotic competence
satisfactorily accounts for  the course of interaction. For example, if a and b denote,
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respectively, a greeting and a conventional response to it,  we don't need to employ
any “voluntaristic” theory of action to explain the fact that a is always followed by
b. We will simply say that A and B have mastered  the rules of an etiquette. Semiotic
competence that is required of the users of  such a code consists in knowing what to
do and doing what they know. If for some reasons a is more and more rarely followed
by b, the frequency of  a will gradually fall, and consequently the social  system will
stop working. The semiotic code that enables inter-actor communication within it
will also decay as soon as the relations of opposition and complementarity between
actions-signs cease to be transparent for the observer  for no longer being actualized
in social interaction.

The social system in which the actors exchange greetings and do not do anything
more exists only in the first of “three structural dimensions of social systems:
signification, domination and legitimation” (Giddens 1984: 30).  “Domination” refers
to actual control the actors have over each other's actions and material resources, and
“legitimation” to the rights they claim for themselves and grant to each other in
interaction situations. Let us assume that a student (B) at any face-to-face encounter
with a professor (A) is supposed to greet him first, while  the latter has such an option,
both being bound by the etiquette to complete the sequence of greetings  initiated by
either of them. While semiotics stops at analyzing the relation between a and b in the
action string ab, the sociologist, having noticed that the actors  A and B are no longer
interchangeable in producing ab, will explain the fact that the first of two possible
sequences of events B:a, A:b and A:a, B:b happens much more often than the other in
terms of some prototypical positional structure which exists in the dimension of
domination and/or legitimation.

Giddens  criticizes (1984: 31–33) imitating structuralist lingustics in sociology for
the “‘retreat into the code’ – whence it is difficult or impossible to re-emerge into the
world of activity and event.” His assertion that “domination … is the very condition
of existence of codes of signification” and “the semantic has priority over the semiotic
rather than vice versa” sounds reasonable, insofar as it means that the relations
between signs within a social code reflect rather than determine the relations between
events produced by the actors in their “world of activity.” However, Giddens claims
in turn that semiotic representations, including scientific descriptions, of social
practices are shaped by “ideologies” which relate “signification to the legitimation of
sectional interests.” The “linguistic turn” has favored,  to be sure,  a revival of the
Marxian brand of anti-positivism, but the new wave of sociological “grand” theorizing
has brought  with it earnest attempts to delineate anew the domain of elementary
social facts and thus provide a conceptual basis for the study of social systems
“organized as regularized social practices, sustained in encounters dispersed across
time-space” (Giddens 1984: 83). Hence, ordinary sociologists can also benefit from
reading the treatises, such as The Constitution of Society or The Social Construction
of Reality (Berger and Luckmann 1966), albeit their own meta-reflection should
rather feed on the problems which arise in the context of empirical theories. “Without
some concrete laws and principles to ponder – Turner (1985: 24) has aptly noticed –
meta-theory becomes … embroiled in unresolvable philosophical issues that are best
left to philosophers.” Certainly, never ending disputes, like that between the advocates
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of  holism and individualism, should remain the business of philosophers. However,
there is one meta-task that any scientist must not cede even to the masters of
analytical philosophy, namely, the construction of a language of which the “limits”
will determine the limits of the world to be studied in a given discipline. In carrying
out this task, one should respect Ockham's maxim  (“Entities should not be multiplied
beyond necessity”), a natural complement of  Wittgenstein's principle (“The limits of
my language mean the limits of my world.” Tractatus, 5.6).

Following these guidelines, I have shown earlier in this section how to build a
minimal language that enables the description of elementary forms of behavioral
dependence. To recap, in order to define power in a dyad, all we need to assume of
actors A and B is that they can: (1) recognize, choose and perform meaningful acts;
(2) assess the likelihood of some messages concerning some events possible to happen
in their environment; (3) evaluate these events in terms of their desirability for
themselves. Thus, the term “will” and whatever it denotes in Weber's definition of
power are left beyond the limits of our scientific language-world together with few
other characteristics of man which appear in sociological literature. Lastly, our
conceptual  model of social interaction was enriched with a positional structure
(roughly corresponding  to  what Berger and Luckmann call “typification” of actors)
with the intention to give a nonliterary meaning to any statements of the form: Private
B, having heard “attention!”, stands to attention, provided that he knows that a person
A who has uttered such a command is an officer. Notice that although both  A and B
are physically capable and semiotically competent to give and execute commands of
the kind, yet it is A that has the right to tell B to stand to attention solely by virtue of
occupying within a social system a different position than B. The power of  A over B
in this example is not personal but  structural. That is to say, one can imagine the
existence of an isomorphic system in which A and B swapped places (now B is an
officer and A is a private) without changing their personal qualities described above
as  (1)–(3). And not only imagine. Arbitrary assignment of positions to actors is part
of the construction of any artificial social system with a well-defined range of
possible inter-actor encounters.

1.3.20. You can't avoid an inquiry into the foundations of basic social science
every time a small short-lived self-contained piece of social reality must be created
in a laboratory for the purpose of theory testing. The simpler is an experimental
system you are to construct,  the shorter will be its linguistic-ontological description.
Indeed, I could make Chapter 1 much shorter if I chose to confine my metatheoretical
analysis to exchange networks instead of building an analytical framework
encompassing various types of social systems. I hope that mathematical readers will
appreciate the author's restraint. As it were, I did refrain from writing a whole book
on “foundations.”  I also hope that the long introductory chapter I wrote instead will
provide nonmathematical readers with enough sociological stuff to think over.

I will close Section 1.3 with few remarks concerning the use of mathematics in the
empirical sciences. The distinction – which I have introduced earlier in this section
– between social mathematics and mathematical  social science can be extended to
any empirical science. It was the discovery of non-Euclidean geometries that brought
the awareness of the richness of the world of mathematics. Indeed, it  contains a great
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many abstract structured  objects, possibly more  than will ever be applied as models
of real-world objects.

The phrase “applications of mathematics in the empirical sciences” seems to
convey a sense of one-way dependence of empirical knowledge on the state of
mathematical knowledge.  Actually, it has often been the case that an empirical theory
arose and developed independently until it got ripe for formalization by means of an
already available mathematical theory which had been devised without concern about
its eventual empirical application. However, it has no less commonly happened
throughout the history of  the symbiotic relationship between mathematics and
empirical sciences that some branches of  mathematics have stemmed from  the
analysis of some simple phenomena. For example, the concept of derivative of a
function had its roots in formal defining velocity as a quantitative property of a body
in motion. It was physics that gave birth to the calculus (also known as mathematical
analysis) which had been equated with mathematics tout court prior to the emergence
of the theory of sets, abstract algebra and topology considered today most
fundamental  mathematical disciplines.

Kemeny and Snell (1962: 8) once foretold that  “one may look forward to the day
when the social sciences will be as major a stimulus for the development of new
mathematics as physics has been in the past.” In fact, when Kemeny and Snell
expressed their expectations, the study of social interaction in the dyadic, group or
network context had already been stimulating the development of few relatively
young mathematical disciplines, such as game theory and graph theory. For example,
mathematical investigations of  tournaments (a special class of directed graphs; see
Chapter 11 in Harary, Norman, and Cartwright 1965) had to do with the discovery of
a dominance structure (“pecking order”) in animal groups. As I already mentioned in
the Preface, my own work on “the mathematics of exchange networks” also began
from an attempt  to formally describe (Sozański 1993a) the social systems that I saw
for the first time in action in my colleague's lab.

While the search for “new mathematics” for the social sciences is going ahead,
one should not dismiss various attempts to use “old mathematics” outside its “natural”
domain of application. The concept of velocity – once it is formalized as the
derivative of an appropriate mapping – loses its specifically physical meaning and
becomes applicable wherever there is a  need to describe the rate at which one of two
continuously varying quantities changes its value in relation to the other quantity.
What must remain particular to each empirical science using differential calculus is
only the way in which co-varying quantities are given operational meaning through
measurement procedures.

In classical mechanics, the mathematical form of the laws of motion is inherently
connected with their physical content. In the 20th century physics, especially quantum
mechanics, the use of mathematics may no longer be described as  formalizing a pre-
mathematical imagery. Whatever can be said clearly about the very existence and
nature of elementary particles cannot be said otherwise than in the mathematical
language. Hence, to test a theory that deals with the behavior of these mysterious
entities, one has to build a long chain of derivations connecting indications of
measurement instruments with certain events happening on the level of physical
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reality where similarity between an empirical object and its mathematical model
cannot be assessed through direct perception.

When more weight is attached to mathematical formalism than to data generation
procedures,  the second pillar of any physical paradigm, the boundaries between
physics and other empirical sciences seem to blur. A recent research program for
mathematical social science, proposed by a group of interdisciplinarily oriented
physicists (Chakrabarti et al. 2006), consists in applying some models of
mathematical physics to social processes such as opinion formation within a
population whose members are given  certain network-determined opportunities to
influence one another's views.  Sociophysics – as this research program has been
labeled by its proponents –  should not be confused with the reductionist conception
of basic social science. Reductionism postulates that any form of social interaction
which involves communication of two minds using a common semiotic system be
represented  as  two coupled biophysical processes that are going on in the brains of
actors A and B, say, when  A gives a command to B, and B hears, understands, and
executes it. Sociophysics, like Lewin's field theory and other early products of the
impact of physics on  the social sciences, falls under the second variety of heuristic
naturalism which recommends that social sciences imitate natural sciences in the
ways of conceptual and formal representing their subject matter. The imitation usually
consists in the search for social analogs for physical variables like mass or energy.

The use of mathematical models of physical origin would really make for the
unification of social and natural sciences if a given physical paradigm could be
imported together with the respective theory, that is to say, the counterparts of the
laws operating  in a physical domain would remain true in an analogous social
domain. To test a sociological theory of the sociophysical origin, one has to devise
some measurement techniques for sociophysical variables. Since sociophysics has so
far been relying mainly on simulations, it is premature to evaluate this research
program in terms of its empirical validity.

1.3.21. The question of whether to construct new mathematical tools or to borrow
those already proven from other sciences arises in any  empirical discipline at the
stage when mathematical modeling becomes indispensable for building theories of the
third genus. The use of mathematics in sociology – insofar as the first and second
form of theorizing are concerned – can at best consist in: (1) introducing symbolic
notation and logical rules to formulate theoretical propositions and enable strict
deductive reasoning; (2) translating concepts into variables and applying to
sociological data the rich repertoire of statistical methods.

“Statistics is an all-important tool of quantitative sociologists, but the mere
practice of statistics for the purposes of estimation and inference – as Srrensen
observed (1978: 345) – would not be considered mathematical sociology by most
sociologists.” He concluded that the “construction of models implementing a theory
about a sociological phenomenon” is at the core of mathematical sociology. I share
this widespread view, yet I must add that it is often difficult to draw a sharp boundary
between methodological and theoretical applications of mathematics in sociology.
Some procedures of multivariate statistical analysis which have long since been
known to sociologists  (Blalock 1969) require of the user not only to supply a  data
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matrix  (a matrix whose ij-entry is the value of jth variable for ith unit of analysis) to
be processed  but also to specify structural equations that are to describe theoretical
causal connections in the set of variables.

What is a mathematical model?  Whenever you speak of a model, you can be
asked to point out something that is modeled by the model. Hence, our question must
be phrased more precisely:  what is a mathematical model of  a nonmathematical
entity?  A toy model of Eiffel tower is not mathematical because both the tower and
its model are material objects, which can also be said about a model and his or her
portrait or statue. Interestingly, the word “model” in  the second example is referred
in ordinary English to the original rather than to its image. In either case, two objects
belong to the physical world. They are recognized as similar with respect to certain
criteria specified by the user or the constructor of a model. You may insist, for
instance,  that your souvenir from Paris be made of metal like the original, but you
may well define the modeling relation as having similar 3-dimensional shape only.
Geometric similarity of the toy and the tower can be verified by comparing some
lengths and/or angles measured for both things and their constituent components. If
a material object has disappeared from the first Popperian world, as it happened to
Twin Towers in New York,  the construction of an exact copy may still  be feasible
if a structural-quantitative description of the original is available in the third world.

Many scientists and philosophers expect of mathematics to provide empirical
sciences with no more than a  language which would be better codified than the
natural language. Klemens Szaniawski, my first teacher of mathematical sociology,
defined (1994: 63) a “mathematical model of an object under study as a set of
postulates characterizing  that object in the language of mathematics.” This usage of
the term “model” – he commented – differs from the one that is endemic among  the
logicians who used to call a model of  a given  theory any structured domain (a set
taken together with some set-theoretic constructs) in which that theory is true.

The expressions “mathematical model” and  “formal theory” are often used
interchangeably, especially if  theoretical propositions are formulated as equations
relating variables with one another. I will not conform to this custom that apparently
reflects  the reluctance of some scientists to acknowledge the existence of  set-
theoretic constructs. Without the distinction between mathematical models and
formalized empirical theories, the statement “t and m are parents of d” would have to
be referred directly to my family rather than to the set {t,m,d} with two relations,
which is a model – in the logical sense – of the theory with two primitive relational
terms P (parenthood) and E (sex equivalence) and postulates P1–P6 as axioms.
However, the structured set {t,m,d}, which is a mathematical  object, need not be
juxtaposed only with the formal theory, as it is somehow related to my family too, the
latter being an  empirical object. This relationship, albeit it is hard to  describe it quite
formally, justifies calling the mathematical object in question a mathematical model
of my family.

No doubt, my family is something more than the set  {t,m,d} with two subsets of
the Cartesian product {t,m,d}×{t,m,d}, yet “something more” should not be associated
with the holistic creed. What I would like to say is simply that my family and its
mathematical model – unlike Eiffel tower and its toy model – exist in different
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ontological domains, and – which can also be said about all material models of
material objects  – the model does not render everything what is known about  the
original, in particular, the fact that  t is a man and m and  d  are women.

Similarly, if you focus on the geometric shape of  a wooden cube and ignore its
weight, type of substance which it was made of, spacetime location and size,  you can
mathematically represent this object as the set [0,1]  whose elements are sequences3

1 2 3 i 1(x ,x ,x ) of real numbers such that  0#x #1, i=1,2,3. The points v =(0,0,0),

2 3 4 5 6 7 8v =(0,0,1), v =(1,0,1), v =(1,0,0), v =(1,1,0), v =(0,1,0), v =(0,1,1), v =(1,1,1)
correspond to  8 vertices of the cube. Its 6 faces and 12 edges are represented as
special subsets of [0,1] ; for instance, the image of the edge whose endpoints are3

1 2mapped into v  and v  is the set {0}×{0}×[0,1]. If you are interested only in how the
vertices are connected with the edges, you can represent the cube as the undirected

1 8 i j i jgraph (V,E), where V={v ,…,v } and {v ,v }0E if and only if v  and v  differ with
exactly one coordinate. If you forget about numerical coordinates of the points and
the geometric nature of inter-point connections, you can use natural numbers
(according to Kronecker, it is the only material that God gave to the mathematicians,
leaving for them the task of building the rest of the edifice of mathematics) to
construct an even more abstract model. The graph (V,E) will then be replaced with the
graph (N,L), where N={1,…,8} and L={{1,2},{1,4},{1,6},{2,3},{2,7},{3,4},{3,8},
{4,5},{5,6},{5,8},{6,7},{7,8}}. You can examine the latter graph without keeping in
mind that every a pair {i,j} in L is somehow related to the line segment  joining points

i jv   and v  in ú .3

Figure I.1. Mathematical representations of a cube

The term “modeling” is also referred to the reverse operation which yields a
visualization of an abstract mathematical construct and helps  produce its material
embodiment. Thus, any graph can be geometrically represented as a collection of
points on the plane and  a collection of line segments joining these points as
prescribed by the given abstract pattern of connections. Some graphs  can be  drawn
in such a way that two segments which have been assigned to any two graph lines
have at most one endpoint in common, but not all graphs admit of  such a
2-dimensional geometric representation (shown for the graph (N,L) in Figure I.1). An
engineer who would try to connect 5 towns with 10 pairwise nonintersecting roads
might think that  the unfeasibility of this task results from some physical laws, yet  the
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necessity of designing at least one intersection is a simple consequence of a

5mathematical fact that the complete 5-point abstract graph K  does not have a
structural  property called planarity (see Harary 1969,  Chap. 11). The second small

3,3size nonplanar graph is the complete bipartite graph K  in which points 1, 2, 3 are
all connected to points 4, 5, 6. As Harary stressed in his dedication of Graph Theory
to Kazimierz Kuratowski, the discoverer of the abstract nature of planarity, this
property transcends topology, however it has concrete geometrical and technical
implications, as shown by the road network example. There are reasons to suspect that
some properties of certain abstract mathematical structures may underlie some
“visible” properties of social interaction networks.

1.3.22. Mathematical models differ with the kind of mathematical tools employed.
Many areas of mathematics, including traditional calculus and its outgrowths
(differential geometry), algebra (group theory, linear algebra), discrete mathematics
(graph theory, game theory, theory of formal languages), and probability theory with
the theory of stochastic processes, all have already proved useful in the social
sciences. Taking account of what is modeled – systems and their fixed structures or
phenomena changing over time – static models can be distinguished from dynamic
models. These two types of model are supplemented with measurement models which
allow for separate operationalization of some theoretical variables in the absence of
fundamental measurement.

Berger at al. (1962), who analyzed few typical examples of mathematical models
in small-group research, based their tripartite typology on the goals to be achieved
through model building. Explicational models clarify, refine or generalize original
conceptualizations of social phenomena. The objective of any representational model
is to adequately describe a regularity in a given body of data. Theoretical-construct
models make use of more abstract mathematical constructs to render hypothetical
mechanisms believed to work under the “surface” of directly observable phenomena.
An empirical theory formulated with the use of such a model need not fit equally well
all relevant data, however it should enable “the theorist to predict the observed
process in a wide variety of experimental situations” (Berger et al. 1962: 107). 

Instead of getting into the issue of taxonomy of models, I will close my remarks
on the goals of mathematical modeling with recalling an example that was shown by
Thomas Fararo at the beginning of his book (1973: 2–3) on mathematical sociology
and social mathematics. His example falls under a particular paradigm for the study
of individual performance as dependent on  “social” context. It is the  “together and
apart” paradigm, which has informed a line of research in social psychology since the
discovery (1898) of the social facilitation effect. It  assumes that the members of a
human population can carry out a given task in two contrasting conditions: (1) Each
actor works alone without communicating with others; (2) The actors work in n-
person teams created by random selection from the population. In the “together”
condition, the members of any team, like single actors in the “apart” condition, try
each to attain the same individual goal, but now they have an opportunity to interact
with one another within their team. Under this paradigm, the primary research
objective is to find out whether interacting with others facilitates, hinders, or has no
effect on goal-attainment. For simple tasks with two outcomes –  “success” (the
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outcome preferred by assumption by every actor) and  “failure” (the opposite of
“success”) – a mathematical reformulation of the paradigm begins from representing
any single individual trial as an observation of a value  a random variable X, which
has two values, 1 (success) and  0 (failure). Such a variable is fully characterized by
one parameter,  the probability of success p=P{X=1}. Groups trials are modeled in

1 nturn by means of  a sequence (X ,…,X ) of  0–1 random variables representing the
performance of n distinct persons working together. The statement that n actors act
“independently” in the group setting becomes meaningful  if the intuitive  concept of
“independence” is  explicated mathematically as statistical independence of random

1 nvariables X ,…,X .

1 nLet us define the group failure as the event {X =0,…,X =0}, or the joint

ioccurrence of events {X =0},  i=1,…,n. Thus, the group fails, by definition, if and
only if its every member does. The assumption of independence implies that the

i iprobability of group failure is the product of  1!p , for  i=1,…,n, where p   is the
probability of success of ith group member. The assumption of population

ihomogeneity is formalized by means of the condition:  p =p, for some p>0 and all i.
The two assumptions entail the following formula

Gn p  = 1 ! (1!p) . n

Gnwhich expresses the probability p  of group success as determined uniquely by the
probability p of individual success and group size n.

To examine if the above mathematical  formula renders a sociological regularity,
we must draw two random samples from the population of humans who understand
the task and are able to communicate with each other about it. First, we observe the
performance of the subjects working apart. The relative frequency of individual
success in the first sample provides us an estimate of p that is needed to calculate the

Gnpredicted value of  p .  Next, we divide the second sample into pairwise
nonintersecting  n-element teams that will work together. The relative frequency of
group success,   observed in the sample which now consists of collective units of
analysis, can be used  to test the hypothesis which states that the probability of group
success equals the  predicted value 1!(1!p) .   Such a  hypothesis  can be testedn

Gnagainst the hypothesis that  p  is greater than the latter value or against the
hypothesis that it is smaller than it. If the data makes us reject the null hypothesis, our
knowledge of “inter-organism behavior regularities” – as Wallace (1988: 31) defined
social phenomena – has increased too, as we have learnt from the experiment that, for
the given n, the interacting group copes with the given task better or worse than the
set of  n isolated individuals. One must appreciate every finding of the kind, and even
more so its generalizations with respect to the type of task and group size –  as long
as one can't  identify group variables suspected of determining the chance of
collective success in the interaction setting.

 It is clear that the paradigm just described owes its ability to produce empirical
knowledge of some “elementary forms of social behavior” to the mathematical
explication of independent co-action of two or more (human or nonhuman) generators
of binary events. As we shall see later in this chapter, the notion of  “structure” also
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admits of a formal interpretation, which has a direct bearing on understanding
“structural approach” in the social sciences. 

1.4. “Structure” and ”structuralism” in the social sciences

1.4.1. The many uses of the concept of “structure” in sociological discourse find
expression in the bunch of abstract concepts – such as “function,” “process,”
“agency,”  “content,” “disorder” – which are juxtaposed with “structure” as its
complements or opposites. Piotr Sztompka (1989), having gleaned  a collection of
definitions of “structure” or ”social structure” from the writings of several leading
20th century sociologists, arrived at the conclusion that various connotations acquired
by this concept in sociology can be reduced to four key ideas: (1)  interdependence
or certain relationships between the parts of  a whole; (2) the ideas of order,
regularity, repeatability or duration; (3) the existence of a deep, essential dimension,
hidden behind the surface of phenomena; (4) the idea of determination, control or
influence on empirical processes. I would add to these as (5) the Simmelian idea of
form. It may seem to be already covered by (2), but the difference comes out in the
comparison of the respective opposite categories.  On the one hand, we have disorder,
chaos or indeterminacy, on the other hand, content or matter.

In ordinary English, “structure” has both material and formal connotations.
According to Oxford Advanced Learner's Dictionary of Current English (7th edition,
2005) the noun “structure” means: “(1) the way in which the parts of something are
connected together, arranged or organized; a particular arrangement of parts; (2) a
thing that is made of several parts, especially a building; (3) the state of being well
organized or planned with all parts linked together.” Thus, as implied by (2) and (3),
“structure,” “system,” and “organization” in colloquial discourse are often used
interchangeably. “Structure” – if conceived   as  “the way in which the parts are
arranged” – has a higher by one logical type than “a particular arrangement of parts”
– under dictionary explication (1) also given as an admissible meaning of the word.

An “arrangement of parts” is usually described more concretely by listing all
dyadic connections between some elements. Hence, the attributes “structural” and
“relational” often mean the same, as in the introductory chapter of Linton C.
Freeman's  book The Development of Social Network Analysis (Freeman 2004: 2),
where we read:  “The kind of research that examines the links among the objects is
called structural … It is present in almost every field of science … In social science,
the structural approach that is based on the study of interaction among social actors
is called social network analysis.” Simmel, who is recognized to have been the
forerunner of network structuralism, was first to combine the relational understanding
of structure with insistence on abstracting from concrete content of social relations.
The essence of Simmel's  “formal sociology” is  shown in his statement I quote below
after Lewis Coser (1977: 180).

“Geometric abstraction investigates only the spatial forms of bodies, although

empirically these forms are given merely as the forms of some material content.

Similarly, if society is conceived as interaction among individuals, the description of
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the forms of this interaction is the task of the science of society in its strictest and most

essential sense.”

The concept of form – Coser comments (1977: 181) –  “is freighted with a great deal
of philosophical ballast, some of it of a rather dubious nature … Had Simmel used the
term social structure – which, in a sense, is quite close to his use of form – he would
have probably encountered less resistance.” An explicit explication of structure as
form is given in Siegfried F. Nadel's book The Theory of Social Structure (Nadel
1957: 7–8).

“Indicating articulation or arrangement, that is, formal characteristics, structure may be

contrasted with function (meaning by this term, briefly, adequacy in regard to some

stipulated effectiveness) and with content, material or qualitative character. … Thus

I can describe the structure of a tetrahedron without mentioning whether it is a crystal,

a wooden block, or a soup cube; …  This has an important consequence, namely that

structure can be transposed [italics mine] irrespective of the concrete data manifesting

it; differently expressed, the parts composing any structure can vary widely in their

concrete character without changing the identity of the structure. Our definition should

thus be rephrased as follows: structure indicates an ordered arrangement of parts, which

can be treated as transposable, being relatively invariant [italics mine], while the parts

themselves are variable.” 

The outstanding Austrian-British anthropologist confused tetrahedron with
hexahedron (cube), but he thought of structure-form in terms of “transposability” and
“invariance,” as if he had a deeper understanding of mathematical structuralism.

1.4.2. The terms pattern and  form are commonly used in linguistics, where
syntactic patterns in formal or natural languages are conceived as arrangements of
empty  cells to be filled with lexical content. For example, the learners of English are
taught a number of “verb patterns” such as the NVN' pattern (noun+verb+noun). To
produce a sentence according to this pattern, one must take three words and arrange
them in a sequence, having in mind that the second word must be a verb, while the
other two must be nouns. In English, which is an analytical language,  “Adam loves
Barbara” and “Barbara loves Adam” are two different sentences built according to the
same pattern in which the order of words is essential. By contrast, in Latin being an
inflectional language,  “Adam amat Barbaram”  and “Barbaram amat Adam”  are two
stylistic variants of one statement in which the noun “Barbara” has an ending that
marks its role in the sentence.

If “Love Adams Barbara” were an acceptable English sentence (semantically,  it
would tell us that an entity called “Love” acts on Barbara in the way called “Adam”),
then the distinction between nouns and verbs wouldn't have to be introduced as part
of the description of the NVN' pattern. The pattern, presented in the form SVO
(subject+verb+object), would then admit any word in all three “places,”   S, V and O
which stand here for three roles a word can play relative to other words in a sentence.
Since in English a word playing role S can also play role O, and conversely, roles S
and O can be lumped  together to obtain role N (marked also N' to allow for
independent substitutions in the pattern NVN'). In linguistics, all words which play
the same role, that is, they are interchangeable in a class of acceptable statements
(contexts), are said to be in the paradigmatic relationship. The relationships between
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elements playing different roles in the same context are called syntagmatic (see
Chapter 2 in Lyons 1968).

Some social interaction patterns can be conceived as patterns in the language in
which elementary units are names of actors and actions. For example, consider the
pattern NVN'A  and assume that the letter A admits of names of actions as
substitutions, while actors' names can be placed in positions labeled N and N'. V is
to mark social actions such as orders or requests, or those actions which are directed
by an actor to another actor and express the former's intention to bring about a definite
action of the latter. Let us illustrate this pattern with the sentence
|Tom|told|Peter|to-shut-the-door|. Strictly speaking, it is not a string in the symbolic
language devised by the analyst, but rather an account of Tom's behavior written
down  in ordinary English by an observer who saw two persons standing near the door
and heard one of them speak “Shut the door, please!” Note that the verstehende
observer took into account the “subjective meaning,” as the record shows the
orientation and intention of Toms' action. 

Suppose now that the next record was  |Peter|shut-the-door|. Such a statement falls
under the pattern N'A. Assuming that the symbols N' and A,  which also occur  in the
NVN'A pattern, are replaced with the same values in either pattern, we can form two
complex sequential patterns N'A|NVN'A  and NVN'A|N'A. The first of them does not
belong to the grammar of the social interaction language because the sequence of
actions described by two sentences |Peter|shut-the-door||Tom|told| Peter|to-
shut-the-door| could never take place (under the assumption that the actors know what
is going on in their common life space). If a linguist found such a record, he would
probably conclude that Tom actually said to Peter “Thank you,” but the observer,
instead of having written |Tom|thanked|Peter|for-shutting-the-door|, misunderstood
Tom's action by classifying it under type V instead of type U containing responses to
others' actions. The second pattern NVN'A|N'A yields  grammatically admissible
sequences of the form “an actor a told actor b to do something and b did what a had
told him to do.” The study of such sequences goes beyond the scope of traditional
linguistics which studies language structures on few levels from phonemes at the
bottom to statements at the top. Under a more general approach, statements are taken
as building blocks of monologs or narratives, texts which are produced by a single
speaker, or dialogs and polilogs in which two or more speakers jointly produce  a
stream of statements. Dialogs are more interesting for the sociologist because
relations within such sequences may reflect sociolinguistic relationships or social
relationships such as power or status hierarchy.

1.4.3. French structuralists have surely done most for the promotion of structure
on the market of ideas, yet the term has not become their intellectual property despite
their efforts to give it a general while still technical meaning – a meaning that would
dictate definite principles of “structural analysis.” Raymond Boudon (1971: 139–140)
raised doubts about their claim to the originality of  “structural method.”

 “If ‘structural method’ designates a set of procedures for the construction of a theory

about any object, with as high a level of verification as possible and permitting one to

account for the interdependence of constitutive elements — then we can say that such
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a method does not exist”… there is no ‘structural method’ in the sense in which there

is ‘experimental’ method.”

Boudon  concluded that “there are only specific structural theories, some of which are
of great scientific importance, while others are less successful.” Their common
“structural” character, according to him, amounts to the claim that any object
amenable to “structural analysis” must be a system. A review of the postulates which
have been formulated by various structuralists would probably confirm Boudon's
conclusion. However, since the  “systems approach” is shared by other general
perspectives in the social sciences, in search for more specific principles, especially
those admitting of a mathematical interpretation, we must look into the most
authoritative texts presenting the scientific program of structuralism  (Lévi-Strauss
1968: Chap. 15;  Piaget 1971).

Claude Levi-Strauss equates structure with a “model” constructed so as to account
for all facts observed within a given whole and to reveal at the same time its systemic
character. His further postulate recommends to consider such a model as belonging
to a family of models obtained from it by various “transformations.” Jean Piaget
refers the term “structure” not to an object-model but rather to a system of
transformations – conceived as “operations” which can be composed with one
another. If all are invertible, their set with the “law of composition” is a group in the
algebraic sense (to be explained in 1.5.2). For Piaget, it is the investigation of that
group that becomes the main task of structural analysis. In mathematics, the term
“transformation” is often used to denote a mapping of a fixed set into the same set.
In a more “operational”  meaning, the term is referred to any rule which can be
applied  to some objects or states of a fixed object. Unless a transformation is
“closed” (cf. Ashby 1956), its scope of applicability and the result of applying to a
given “operand” do not need  to be uniquely determined nor even  known in advance.

Other principles of French structuralism, such as the search for structures lying
under the “surface of phenomena” or emphasis on binary “oppositions,” seem to me
less important, although they have attracted more attention of philosophically oriented
commentators. The study of transformations may prove theoretically fruitful –
regardless of whether operations are recognized as a product of an autonomous human
mind or they are believed to reflect practical knowledge people arrive at through
rearranging things in the world of their external experience. In spite of little precision
and metaphorical language, mathematical thinking imbues the  structuralism of Lévi-
Strauss and Piaget, especially its “combinatorial” variety which focuses on
transformations that do not change the parts of a whole, but only “reshuffle” them to
obtain  new “configurations” of the same elements. Operations on objects usually are
not given in advance, but need to be constructed upon certain knowledge of how an
object to be transformed is “structured,” that is, one has to know how the parts of a
whole are connected with one another. Some transformations are defined so as to
leave unchanged the form of connection. It is the postulate of studying invariant
properties of systems, or those properties which are preserved by certain
transformations, that seems to be the original feature uniting all varieties of
“structural approach” in science. 
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1.4.4. The model-transformational structuralism whose principles have been
sketched above has exerted some influence on the study of culture and society.
Having contributed to promoting  mathematical modeling in the social sciences, it has
not taken on within mainstream theoretical sociology. Robert Merton, who embarked
on codifying (Merton 1975; Stinchcombe 1977) the principles of sociological
structural analysis, derived them from sociology's own intellectual tradition, denying
any affinity with French structuralism. Indeed, his understanding of social structure
cannot be placed on  the same level of abstractness with such terms as “model” and
“transformation,” though it admits of a comparison with “structures of social
communication” discussed  in Structural Anthropology. Merton's  claim (1975) that
the “choice between socially structured alternatives” is central to social structure
parallels Lévi-Strauss' view of the choice processes (e.g. the choice of marriage
partner in primitive tribes) as determined by  “socially established rules.” However,
for Merton, “the utility or reinforcement of a particular alternative choice” is also
“socially established, as part of institutional order.” While Lévi-Strauss, speaking of
the “information” of marriage rules tends to reduce  structural determination to
limiting the freedom of choice, Merton apparently ascribes to social structure an
endogenous  power to force people to achieve “socially established ends.”

Piaget (1971) defined “structure” as a “system of transformations” through which
a dynamic “whole” is “self-regulating,” yet he failed to explain satisfactorily the logic
of the interrelationship between the two notions: “transformation” and “self-
regulation.” According to him (Piaget 1971: 97)

“By the definition of structure …  all the social sciences yield structuralist theories

since, however different they may be, they are all concerned with social groups and

subgroups, that is, with self-regulating transformational totalities. A social group is

evidently a whole; being dynamic, it is the seat of transformations; and since one of the

basic facts about such groups is that they impose all sorts of constraints and norms

(rules), they are self-regulating.” 

The founders of the model-transformational structuralism claimed universal
applicability of their approach. They saw the reason of the resistance to the “structural
method” in the sociologists' excessive interest in surface phenomena and ensuing
failure to unravel genuine structures governing human actions.  “Deep” structures,
which remain  unrecognized by the actors themselves and hence go unnoticed by
those relying solely on people's subjective reports, should not be regarded as
metaphysical entities – stressed the structuralists – once every structure is only an
abstract model we construct to explain observed  regularities. They proclaimed
theoretical self-sufficiency of structure and pointed to structural linguistics as the
science which provides patterns of theory building for all sciences of culture and
society. Certainly, most fundamental language structures can be studied without
taking account of particular motives or reasons that are at work every time when the
speakers of a given language communicate among themselves. Thus, a grammar
reconstructed from a sample of communicative acts has nothing to do with the content
of statements and the ends the speakers want to achieve through their communication.
By contrast, a social action system can hardly ever be analyzed without reference to
the goals pursued by the actors, their values and preferences. Otherwise, as Giddens
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noticed (see section 1.3.19), there is a danger of “retreat into the code” in explaining
social regularities.

Although social systems require a different mode of analysis than language
systems, the model-transformational structuralism is not entirely useless to sociology.
The idea of invariance directs many theoretical endeavors of sociologists.
Sociological structuralism manifests itself, first of all,  in the description of human
actions in social situations by means of theoretical terms such  as  “social role.” By
saying that a given role, in the simplest theatrical sense, is invariant, we simply mean
that what an actor playing a role does  can be performed by other actors without
changing the play. In linguistic terms, the actors who play the same role stand in
paradigmatic relation with one another and in syntagmatic relations with actors
playing other roles in the same setting.

1.4.5. An “anatomical” view of “structure” and the “physiological” understanding
of  the twin concept of “function” persist in sociological imagination since Spencer
who –  according  to Leach (1968) – was the first sociologist consciously using the
term “social structure.” Structural functionalist paradigm has long prevailed in 20th
century sociology, however, after the linguistic turn in social theory, it was
overshadowed by new imagery devoid of organic or teleological connotations. In
Giddens' structuration theory, “structure”  is referred to “rules and resources,
recursively implicated in the reproduction of social systems” (Giddens 1984: 377).
The remark (“Structure exists only as memory traces, the organic basis of human
knowledgeability, and as instantiated in action”) that Giddens appended to his
definition shows that the mode of existence he ascribed  to any social rule differs from
that assumed by Durkheim  of  “any way of acting (maniPre de faire), whether fixed
or not, capable of exerting over the individual and external constraint” (Durkheim
1982: 59). For Durkheim, it is the contrainte sociale that grants to any “social fact”
(a social rule) an existence independent of “individual manifestations” (instances of
applying the rule). The concept of structural determination is also found in Marxian
thought, albeit its distinguishing feature is rather stress on structural contradictions,
or dynamic oppositions within and between structures.  Simmel's “formal sociology”
together with the legacy of social action theorists from Weber to Parsons has been the
last but by no means the least important source of ideas for  “structural” theorizing in
contemporary sociology. In spite of divergent ontological views on the nature of
social systems, the omnipresence of  “structure” in sociological discourse  has hardly
ever involved communication difficulties, since one could always rely on the
colloquial meaning of the term or invoke a concrete description of how the parts are
interrelated to make up a given system.

1.4.6. Although the terms “system” and “structure” happen to be used
interchangeably,  it is a much more common practice to make a distinction between
them, and to speak of the structure of  a system or of any complex entity. Sometimes
“systemness” conveys a richer meaning than being a “whole.” Actors A and B acting
together can be said to form a whole if their actions can be identified within a larger
domain of social phenomena as its self-contained  “piece.” However, the A-B dyad
will not be called a system until the actors's  behaviors are shown to be
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interdependent in a well defined way, say, the move of player A in a game determines
the range of possible moves of player B who is supposed to act next.

The condition of interdependence is often combined with the requirement that a
whole be in a definite relation with its environment. The understanding of the latter
term varies across theoretical approaches. Ludwig von Bertalanffy, who defined a
system as a “set of elements standing in interrelations” (Bertalanffy 1968: 55),
conceived of the environment of an “open system” as an outside reality that interacts
with the system.  Luhmann  (1995) stressed that the difference between the system
and its environment is an essential part of  the system's identity, the environment itself
being understood as  a substratum over which there arises an area of reduced
complexity. An open system preserves or modifies itself the way in which it works
and does this through  selective mapping the processes running in the external world.
The system's environment always remains more indeterminate, diversified or
disordered than the system itself. An  “autopoietic” system whose functioning
involves self-creation determines its boundary and the ties with its environment by
itself. 

The “systems approach” pervading all contemporary science has found
metatheoretical reflection in “general systems theory” (Bertalanffy 1968, Klir 1972
Ed.) – an interdisciplinary project aimed at constructing integrative conceptual
foundations for the study of systems of any kind as well as special categories of
systems  – dealt with by various empirical sciences (physical, technical, organic,
ecological, economical,  cultural, political, and  social systems) or defined in an
abstract or even mathematical way. In particular, if every state of a system is a
collection  of values of  n variables, then  a system of differential equations is
commonly used to describe how the state variables simultaneously change their values
as the time parameter varies continuously. 

The rate of change of each state variable is assumed to functionally depend on the

i i n i1current state of the system. Formally, x' (t))=f (x (t),…,x (t)), for i=1,…,n, where x (t)

i istands for the value of ith variable  at moment  t and x' (t) for the derivative of  x  at t.

The term “social system” occurs already in Comte's  early writings (Plan de travaux
scientifiques nécessaires pour réorganizer la société, 1822). Today it is associated,
first of all, with Talcott Parsons (The Social System, 1951; see Parsons 1968 for a
summary of his theory) and Niklas Luhmann  (Social Systems, 1995). Parsons found
it impossible or inadequate to define the state of any “social action system” in terms
of values of certain quantitative variables. His systems approach –  as  every
analytical framework which addresses a too broad range of phenomena –  resists
formalization. James S. Coleman (1990), who started like Parsons from “purposive
actor,” was able to build a formal theory of equilibrium for a narrower but still
comprehensive  class of social action systems. In his model, the domain of system-
relevant social actions consists of inter-actor transmissions of partial control over
certain events in the environment.

The relationship between a set of n actors and a set of m  events is mathematically

represented by two matrices. The  interest matrix has in  the  ij entry the relative weight

actor i assigns to event j. The control matrix gives the share of the total control over

event j currently in possession of actor i. The measures of relative interest in the events
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are fixed parameters characterizing actors. Since the actors may freely pass control over

events to each other,  the control matrix functions in this model as a variable state of

the system. Given the initial distribution of control, the theory's objective is to predict

the final state of the system – on the assumption that each actor tries to get as much

control as possible over the events he is most interested in. 

1.4.7. Niklas Luhmann is widely recognized as Parsons' most eminent successor
within  the system-centered variety of “grand theory.” His own theorizing on the
nature social systems was informed overwhelmingly by anti-positivist or anti-analytic
“continental” philosophy. However, he also adopted or rather adapted for his purposes
some  ideas which are inseparable from the pro-science orientation within general
systems theory. It is,  first of all, the concept of “constraint” or  “constraint on
variety” as defined by W. Ross Ashby (1956: 127). His classical book (An
Introduction Introduction to Cybernetics) inspired in turn Walter Buckley (1967: 94)
to  define  “social organization”  as “a set of common-meaning-based constraints in
the ensemble of possible interactions of social units, a reduction in uncertainty of
behaviors.” Later in the same book (1967: 128), Buckley explained the meaning of
“structure” similarly, in line with the custom, prevailing among  general systems
theorists, of  equating  “structure” with “organization.” Nevertheless, it is “structure”
not “organization”  that has always stuck in the minds of sociologists as the focus of
theoretical debate. As regards the relation between the two terms, one should reserve
the latter for a gradable characteristic of complex objects, all having structures of the
same type. For example, the fewer dyadic channels provide to an n-person group the
opportunity of direct or indirect communication, the more “organized” is the group
endowed with one of a number of permissible structures modeled each by a symmetric
relation such that the respective n-point undirected graph is connected. When every
group member can directly send a message to any other member, one would say that
no “constraint” has been imposed on within-group information flows. However, in
this case, there also exists a communication system with a relational structure.

Unlike many leading American sociologists, Luhmann showed more openness to
French structuralism and Nadel's “formalism.” He recognized the relevance of “form”
and “relation,” yet it was the notion of  “constraint” that he found crucial to the proper
understanding of structure, as can be seen from the following statement (Luhmann
1995: 283).

“Systems theory and structuralism agree that structures abstract from the concrete

quality of elements. This does not mean that every structure can be materialized in

every kind of element but that structures endure despite change in their elements and

can be reactualized. ... Precisely for this reason one cannot follow a widely held

interpretation and define structures as relations between elements ... Thus structure,

whatever else it may be, consists in how permissible relations are constrained within

the system.”

The term “constraint on variety” was introduced by Ashby to denote the relation
between the set  of  actions, system states, events, etc. – possible to be observed in a
situation –  and the smaller set made up of those elements of the larger set that are
actually observed by virtue of some selection mechanism posited by the observer. To
give a familiar sociological example, consider the set of all configurations of
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responses to m stimuli (e.g. yes or no questions),  each admitting a “positive”  (coded
1)  or “negative” response (coded 0). Under the Guttman constraint, the number of
configurations drops from  2  to m+1;  for m=3 and some ordering of the stimuli, them

predicted  configurations have the form 111, 110, 100, 000.
An explanation of the selection mechanism is always a matter of a  theory.  Such

a theory may postulate the existence of some unobservable constructs. Thus,
Guttman's theory claims that both the set of stimuli and that of subjects can be
mapped into an ordered  set Z, called “latent continuum”  (the mapping of stimuli is
assumed to be injective, that is,  distinct points of Z correspond to  distinct stimuli),

i j i jso that subject i responds positively to stimulus j if and only if x $y , where  x  and y
are the points in Z assigned to  i and j. 

Luhmann found the concept of structure indispensable for the science of systems
only if this concept is taken to mean more than “relations, interdependencies, and
invariance.” Let me quote again from his major work (Luhmann 1995: 286).

“All this has the function of a structure only if it is selectively introduced as a constraint

on combinatory possibilities. Any further refinement of the concept of structure must

therefore be presented as constraint on constraints. ... Therefore we will constrain the

concept of structure in another way: not as a special type of stability but by its function

of enabling the autopoietic reproduction of the system from one event to the next.”

Accordingly, one would have to call “structure”  the rule that governs  the
reproduction of proteins in a living cell   rather than reserve this term for any of the
configurations which are the input to this rule and consist each of a number of fixed
building blocks (of four types: A, C, G, T) arranged into a unique DNA chain.

1.4.8. Our excursion into first generation theorizing in search of “structural
insights” ends with the conclusion that thinking of structure in sociology  revolves
around three concepts, relation, form, and constraint, all on high level of abstractness.
I will stay within this conceptual triangle without dwelling any longer on various
attempts  to further “refine” or   restrict the understanding of “structure.” This  book
is to develop mathematical tools for the study of experimental exchange systems,
which systems will not be conceived as undergoing “autopoietic reproduction” nor
as having internal mechanisms for maintaining stability of the framework that creates
both barriers to and room for a variety of social actions.

The concepts of form and relation are key to bringing sociological and
mathematical structuralism closer to each other. The notion of constraint may not be
left aside, however,  as for many sociologists it is an alternative to equating
“structure” with any regularity in people's actions – according to Peter Blau's editor's
introduction to the collection of papers (Blau 1975 Ed.) by most eminent American
sociologists who presented their views on the  theme “Focus on Social Struture” of
the 69th ASA annual meeting.  We find “constraints” also in the first of five
“paradigmatic characteristics of structural analysis” proposed by the  founder of
International Network for Social Network Analysis.  Barry Wellman claims (1988:
20) that behavior should be “interpreted in terms of structural constraints on activity,
rather than in terms of inner forces within units (e.g. ‘socialization to norms’).”
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The first and foremost  principle of network structuralism – in the second place
on Wellman's list – gives priority in explaining the behavior of a social system and
its parts to  inter-element connections which are assumed to be more important than
the elements' “inner attributes or essences.” The three remaining postulates  are a bit
more specific: the search for patterns of interdependence of dyadic ties (interaction
processes in dyads AB and AC are interdependent and dependent on the actions A's
two alters in relation to each other); multi-level modeling (structure as  “network of
networks”); the use of analytical tools that  “deal directly with the patterned,
relational nature of social structure in order to supplement – and sometimes supplant
– mainstream statistical methods that demand independent units of analysis.” 

Let me go back to the first “paradigmatic characteristic” of  “structural analysis.”
“Structural constraints on activity” are taken there to be the opposite of  “inner
forces” that push the actors to conform to system norms or pursue non-system
individual goals. Should we look at structural constraints as “external forces” that
press the occupants of the positions in a social system to do something that differs
from what they would be doing were they driven only by the “inner forces”? Giddens
(1984: 181) quite reasonably rejected such a view he wrongly attributed (see the
citation in 1.3.2) to all “structural sociologists.”. 

“Structural constraints do not operate independently of the motives and reasons that

agents have for what they do. ... The structural properties of social systems do not act,

or ‘act on,’ on anyone like forces of nature to ‘compel’ him or her to behave in any

particular way.”  

Giddens' theoretical variations on the theme of “structure as constraint” aim at
dissolving the Wittgensteinian inter-actor “encounter” in a “societal totality” and
equating the “structural” with  the “institutional,” “institutions” being understood as
“chronically reproduced rules and resources” and “structures”  as  “rule-resource sets,
implicated in the institutional articulation of social  systems.” Finally, he defined
“structural principles” as “principles of organization of societal totalities” and
“structural properties”  as  “institutional features [of social systems], stretching across
time and space” (1984: 375–377). This kind of theorizing fully deserves to be called
an “intellectual orgy,” which is the expression Homans referred in the last chapter of
Social Behavior to his own reflections on the “institutional” and the
“subinstitutional.”

1.4.9. Homans' (1974) insistence on the study of elementary forms of social
interaction  agrees  with Coleman's  view   (see 1.3.1) that any basic empirical science
should begin from modeling simple regularities. While every mathematical sociologist
will readily appreciate discipline and parsimony  in constructing conceptual maps of
the social world, my sympathy for Homans' methodology does by no means entail
acceptance of the language he found most adequate for the description of most
elementary social regularities. Nadel's book shows that  behavioristic psychology is
not the only option for the sociologist who is going to make action in a situation the
most elementary term of analytical sociology. To render the special nature of social
phenomena, the observational language must be extended by the notion of a social
norm. That is, one must assume that all actions or action sequences that are physically



The Mathematics of Exchange Networks, Chapter 1 65

and culturally possible in a given situation can be divided into permitted and
forbidden. Given this distinction, two actors will be said to enact the same role in a
situation if any permitted action or action sequence remains permitted after the actors
change places between each other. A social position is defined in turn by specifying
a set of situations, indicating a role in each, and stating the conditions that have to be
met in order that an actor be entitled to enact the given roles in these situations. These
conditions can be formulated, in particular, in terms of performing a definite sequence
of actions by one or more by interacting individuals. The notion of  social constraints
then becomes a shorthand for saying that definite actions can be “legally” performed
only by the occupants of definite social positions and that a relation of dependence
exists in the set of positions. A  position is said to depend on another position if there
is a social situation common to the two positions, such that the range of permitted
actions for the individual occupying the first position is determined by the action of
the occupant of the other position.

The conceptual framework I've sketched above has an essential point of
indeterminacy, namely, it has not been said how to introduce the normative division
of the set of meaningful actions and meaningful sequences of meaningful actions
possible to be observed in a given situation. One can consider three ways of defining
norms: (1) A permitted action is that whose frequency is significantly greater then that
of the forbidden actions; (2) A permitted action is that whose frequency of acceptance
significantly exceeds the frequency of acceptance of forbidden actions; (3) A
forbidden action of A  is that which is followed with sufficiently great frequency by
a  negative sanction, defined simply as a definite action of some B or Bs with some
consequences for A that A would like to avoid. The second definition of a social norm
makes sense insofar as the beliefs on which actions are right or wrong – the beliefs
the observer can and must learn by communicating with the actors themselves – are
included in the theoretical model of an actor. Under the first definition, the observed
interaction process and social constraints are indistinguishable. Then, to cite Nadel
(1962: 12), 

“We arrive at the structure of a society through abstracting from the concrete

population and its behavior the pattern or network (or ‘system’) of relationships

obtaining ‘between actors in their capacity of playing roles relative to one another’ [the

phrase quoted after Parsons].”

Theoretical  “abstraction” begins from detaching constant forms of behavior from
people through disregarding inter-individual differences in performance. Next, roles
are abstracted from situations and a number of relationships are defined in terms of
actors' coaction. To classify these relationships into few abstract types and obtain a
positional model of a social system, Nadel (1962: 115) proposed two criteria.

 “(i) The first applies to roles between there is no ‘dissociation’, that is, to roles which

we know to involve special relationships with actors in other roles, and which are

rendered incomparable only by the qualitative diversity of the relationships. The

criterion here is the differential command over one another's actions. (ii) The second

criterion, though it applies to the first case also, is meant to overcome the ‘zones of

indeterminacy’ in actor-public relationships. In order to do this we reinterpret the ‘roles

played relative to one another’ of individuals so that they have an extraneous reference
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point; this can be found in the differential command over existing benefits or

resources.” 

These high level structures that the observer must abstract from the actors' actions and
co-actions are therefore certain patterns of inter-actor dependence along with the
“property structure” which may also be seen as an inter-actor relation – determined
by unevenly distributed control over some resources.

In the final part of his insightful book, Nadel concludes that “an orderliness
abstracted from behavior cannot guide behavior, resist change, or be passed through
by living people.” Hence – he continues – we need  a “new concept” that “must cover
two sets of facts: first, the normative assertions, beliefs, and instructions current in the
society in so far as they bear on roles and relationships; and secondly, the
institutionalized practices designed to produce and maintain the state of affairs in
question” (Nadel 1962: 148). In other  words, “structural analysis” – which Nadel
considers  “to be no more  than a descriptive method, however sophisticated, not a
piece of explanation” (1962: 151) – must be supplemented by showing some reasons
for the very existence and persistence of  social constraints. However, since the
“second set of facts” – institutionalized external reactions to norm breaking –  is only
a special part of  the stream of all  actions observed in a spacetime setting, the state
of social order can only be explained ultimately by shared approval of the binding
character of certain  “normative assertions” (recall the “sociologistic theorem”
discussed in  1.3.15).   

1.4.10. Metatheoretical reflections on structural method/analysis/approach have
led us to the heart of  “social theory” –  the problem of social order, or the question
of why such and not other actions are forbidden in a given social system and why
humans  who are actors in it conform to the norms, being aware of having an option
to behave otherwise. Under Homans' “undersocialized” model of a human being,
normatively acceptable behaviors repeatedly happen by virtue of elementary
motivational forces working on the subinstitutional level. Parsons' “oversocialized
conception of man” (Wrong 1961) posits in turn that all actions of men as occupants
of positions in a social system are brought about by social constraints conceived as
part of the system's cultural “superstructure.” In both cases, the state of social order
cannot be distinguished from a particular regular pattern of social relationships that
obtains under certain physical and/or social limitations. By contrast, every
experimental investigation of a social interaction system (recall the example given in
1.2.6) presumes the distinction between structure-constraint – the interaction setting
created by the experimenter (his task is to prepare the “stage” and assign positions to
the subjects, and if necessary, to impose on them certain rules of co-action) – and the
interaction process that is observed under the given constraints, which process  is to
be analyzed in terms of consistency with a given theoretically predicted structure-
pattern.

In general, experimental sociology can stay with the formal  understanding of
“constraint.” To study structures-patterns emerging under particular structures-
constraints, one needs to assume the existence of a “constraining force” that is located
inside or outside the actors and makes them act in accordance with certain rules to
achieve culturally defined ends. While “hard” natural constraints can, indeed, be
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interpreted as physical forces acting uniformly on everyone from the outside, “soft”
social norms narrow down the range of meaningful behaviors through internal
motives which  may vary across a set of people having to act and co-act  in a given
situation. Neither the  road network (physical constraint) nor the Highway Code
(normative constraint) does by itself force the drivers to refrain from illegal
behaviors; they must be somehow motivated to obey the rules. They use roads, rather
than other surfaces on which wheeled vehicles can move, in accordance with
arbitrarily established norms, such as one-way traffic on certain roads, because they
are somehow motivated to behave so. They may care about their safety or be afraid
of being punished or feel a moral obligation to observe the law. Motivation is
therefore an indispensable conceptual complement of “structure-constraint.”

The distinction between constraints and  action under constraints entails the
necessity to distinguish between motivation for conformity and extrinsic motivation
that pushes people to pursue certain goals, no matter whether they find an opportunity
to do it inside or outside the system. The two functionally different types of
motivation need not differ with their intrinsic quality. In experimental exchange
systems, the actors want to earn as many points (convertible to money) as possible
from transactions among themselves. If they conform to the “rules of the game”
because they are remunerated by the experimenter for doing so, their motivation for
conformity and their extrinsic motivation have the same “subinstitutional” nature. 

It seems reasonable to hypothesize that the structure-pattern of traffic in a highway
network will depend to some extent on the structure-constraint of such a system and
to some extent on  the motives behind the drivers' decisions on from where to where
to go and which route to choose. For simple small-size social systems, the extent of
“structural effect” can be investigated experimentally, which requires the construction
of two or more systems of the same type, with the same number of actors having in
either system similar behavior opportunities and motivation, so that the experimental
systems differ only in the form of their structures-constraints. It is this paradigm that
was applied – prior to experimental research on exchange networks – by Alex Bavelas
(1950; see also the historical account in Freeman 2004) to examine how the form of
network constraint imposed on within-group communication affects group efficiency.
To show the logic of  “structural approach” of the kind, let me use – instead four 5-
actor systems considered by Bavelas – two 3-actor communication systems with
network structures displayed in Figure I.2.

Figure I.2. Two small communication networks (3-point connected graphs)   
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The task to be done by a team of n persons who are allowed to exchange information
under a given communication network is to guess the unique common element of  n
distinct n-point sets made known each – at the beginning of each experimental trial
–  to one team member. The n sets to be assigned to n subjects are formed by picking
an element s from a set S of n+1 symbols and appending s  to all  n!1-point subsets
of S!{s}. For instance, for n=3 and  S={~,L,�,�}, by appending � to {~,L}, {~,�},
{L,�} we get 3 distinct 3-point sets whose only common element is �. Notice that the
intersection of any 2 out of these 3 sets, e.g. {~,L,�} and {~,�,�} has  2 elements (in
general, n!1 elements), which implies that any team member by sharing with another
member his partial information reduces (from 3 to 2 alternatives) the other's
uncertainty as to which element is in all sets. The other actor may now transmit his
current knowledge to the third actor or wait until the latter passes to him the last piece
of information, with the effect that one of them will find the solution.

To analyze the dynamics of collective behavior in such communication systems,
one needs to specify acts and norms of co-action, and describe the motivation
expected from the actors, as well the assumed level of their knowledge of the
structure-constraint and ongoing stream of actions.  Our assumptions in this matter
are the following: (1) Any system-relevant act consists in sending all information an
actor has at a given moment to one of his neighbors in the communication network;
(2) No actor can send information to others more than once in each trial; (3) Two
transmissions may happen simultaneously only if the respective pairs of actors do not
intersect; (4) Every actor knows the network constraint on group action; (5) Any
action is known only to the two actors directly involved in it; (6) The problem is
recognized by the observer as solved by the group as soon as one of its members
discovers the common symbol; (7) All actors want to achieve the collective goal as
fast as possible and they don't care who of them will make the last step that yields the
solution.

Assumption (3), applied to 3-person groups, excludes simultaneous information
flows. Thus, in both systems with network structures displayed in Figure I.2 all
transmissions have to be carried out sequentially. The remaining assumptions imply

1 2 1 2that the chain network (B –A–B )  allows for the following sequences: (B 6A)(B 6A),

2 1 1 2 2 1(B 6A)(B 6A), (B 6A)(A6B ), (B 6A)(A6B ), where arrows mark the direction of

itransmissions. None of 4 predicted  strings begins from A6B  because A (properly

1 2speaking,  an actor in position A), knowing that B  cannot communicate with B , must

1 2notice that sharing information with B  or B   will not bring the group closer to the

1 2 2 1solution, as such an action must be followed by (B 6A)(B 6A) or (B 6A)(B 6A), thus
making the initial action superfluous.  In the triangle network, action strings of length

33 cannot be eliminated, however. For example, A 's action in the sequence

1 2 3 1 2 3 3 3(A 6A )(A 6A )(A 6A ) is redundant, but A  cannot discover it in advance (A ,

1 1 2unaware of  A 's action, may address A  before receiving from A  all information
sufficient to solve the problem by himself).

Our analysis results in the prediction that a group which works in the triangle
network  will need on average more time to complete the task than a group placed in
the chain network. Clearly, such a hypothesis applies to the systems in which every
transmission takes the same amount of time, which condition will be met if all
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channels in  both communication networks have the same technical characteristics.
Then the only difference between two systems lies in the form of their network
structures. But what should we mean by having the same or different form?

Bavelas anticipated that the readers of his paper (1950) on “communication patterns in

task-oriented groups” might understand the concept of  “form” in line with traditional

2- or 3-dimensional geometry. To  dismiss such an interpretation, he showed two

ivisualizations of one of his 5-node networks, the one with four channels A–B . In the

1 2 3 4first drawing, position A  was put in the center with B , B , B , B  around it; in the

isecond drawing, A was placed above all B , which might suggest a sort of domination

over the remaining positions. Bavelas stressed  that both geometric representations are

equally plausible, however the first  illustrates the existence of a central position in this

network. 

Today we know that sameness of  form of two “structured” objects can be defined
with full precision  by the condition that their mathematical models are  isomorphic.
Hence, when we say that two communication networks in our example  differ in form,
we mean that their mathematical models – two undirected graphs displayed in Figure
I.2 – are not isomorphic.  

1.4.11. The relational understanding of structure pervades the sociology of  small
groups. Indeed, microsocial structures are usually conceived as binary relations
(sympathy, respect, power, influence, communication, etc.) in the set of group
members.  Some relations, such as sympathy, describe a state or process taking place
between two or engaging two group members. Other relations are derived from
comparing values of certain absolute variables (Lazarsfeld and Menzel 1964), such
as, say, the level  of competence in doing something as measured by test scores taken
independently for each person. In many areas of  social research, especially the study
of macrosocial phenomena,  the term “social structure” is referred to the distributions
of a population with respect to such variables. While descriptive statistical analysis
of  social data focuses on the mere fact that people differ among themselves with
values of certain individual variables, Blau  considers the difference or similarity
between A and B in this respect as a hypothetical determinant of  interpersonal ties
within the population. His theory  (Blau 1975, 1977) is based on the notion of a
“structural parameter” (1975: 221–222).  

“A structural parameter is any criterion implicit in the social distinctions people make

in their social interaction. Age, sex, race, and socioeconomic status illustrate

parameters, assuming that such differences actually affect people's role relations. ... The

simplest description of social structure is on the basis of one parameter. Thus, we speak

of the age structure of a population, the kinship structure of a tribe, the authority

structure of an organization, the power structure of a community, and the class structure

of a society.”

Blau tends to neglect an essential difference between kinship or authority structure,
on the one hand,  and age, sex or race  structure, on the other hand. Kinship relations
underlie kinship roles, not conversely (A's status as a parent results from being in the
parenthood relation with some B). Age roles come from a partition of a population
into age categories, say,  children, adolescents, adults, and the elderly. Since these
categories are ordered, there exists a relation in this case too. Sex or race structure,
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which is defined in terms of the values of  a “nominal” rather than “graduated”
parameter, can also be seen as generated by an equivalence relation (recall 1.1.4).
However, Blau's theory of homophily (people who have the same or close values of
structural parameters of either type are more likely to make friends) has been
subsumed under social network analysis because of the intrinsically relational nature
of the theory's explanandum, a non-random arrangement of positive interpersonal ties
in a non-homogenous population.

If a scientific theory is conceived as an organized set of propositions which relate
some variables to one another, then it is the use of structural variables that is the
distinctive feature of structural or structuralist theories. The meaning of the adjective
“structural” seems to be secondary to that of the noun  “structure.” Nonetheless,  we
find it preferable to leave aside deliberations on what should be meant by the
“structure of a whole or system” and try to define “structural variables” –  as a special
subset of the set of all variables that are to theoretically describe a given class of
wholes. Lazarsfeld and Menzel (1964: 427–428) distinguished three  types of
“collective properties.” “Analytical properties” are “obtained by performing some
mathematical operation upon some property of a single member,” “properties of
members” (1964: 431–433) being divided in turn into four  classes: “absolute,
relational, comparative, and contextual.” “Structural properties” are “obtained by
performing some operation on data about the relations of each member to some or all
of the others.” “Global properties” form the third residual category in this typology.

The attribute “structural” – when referred to a whole – often has relational
connotations, as in Lazarsfeld and Menzel's explicit statement. However, it is also
used to denote any permanent characteristics of a system regardless of their relational
or  non-relational nature. In economics, fixed “structural” conditions persisting over
time are contrasted with “conjunctural” fluctuations. Lastly, in multivariate analysis
there is a notion of “structural equations” with the qualifier  “structural” is now
referred not to variables but to functional ties among them.

In the next section, we show that structure, conceived of in mathematics as
something that is constructed from the elements of a given set, has there the twin
notion that serves to compare “structured” entities and clarify the connection between
the concepts of  “structure” and “form.” I mean the notion  of isomorphism
(etymologically, sameness of form, Greek morphe), which can also be used to define
“structural properties” of   mathematical objects as the properties that are “invariant,”
or shared by isomorphic objects. 

1.5. “Structure” and “structuralism” in mathematics

1.5.1. In mathematics, structure has fairly recently come into prominence,
although the need to introduce such a term in a more technical but still very general
meaning has been vaguely felt since more or less the middle of the 19th century.
Inspired mainly by the rapid development of algebra (Corry 2004), the
mathematicians faced the problem of unity of their  discipline when it became clear
that the mathematical universe extends far beyond familiar numerical domains and
geometrical spaces known to everybody from everyday experience. The discovery of
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antinomies resulting from too free use of the concept of a set gave rise to intense
investigations of the foundations of mathematics. Along with the birth of
metamathematics there emerged a demand for such a definition of the field of
mathematical research that could satisfy working mathematicians regardless of their
interest in meta-problems. Such a “positive” or “positivistic” image of mathematics
was offered in the voluminous treatise Eléments de mathématique published by the
team of French scholars who used the nickname Nicolas Bourbaki. Their point of
view was marked in the title of their work, as Bourbaki chose to speak of la
mathématique instead of les mathématiques (the plural) as in ordinary French.

The double, methodological and substantive, unity of mathematics finds
expression in two fundamental notions of “proof” and “structure.” The deductive
method has worked in mathematics since Euclid in an essentially unchanged manner,
only new tools for formalizing proofs were being invented and the view on
epistemological status of  axioms changed in that it was no longer required of the
basis for deducing mathematical theorems to contain only self-evident truths. While
an axiomatics can be arbitrarily chosen, the only concern that remains is to ascertain
consistency of the mathematical theory that is deduced from the axioms.

The general notion of structure appeared in the middle of 20th century. It was for
the first time defined precisely in the first volume of  Bourbaki's treatise (1957;
English edition, Theory of  Sets, 1968). Many particular types of structures, to be sure,
were known much earlier but to formulate a generalizing definition was apparently
not an easy task.

I shall present here the elements of this definition in a manner, I hope, sufficiently
precise for mathematical readers but not quite formal, as too much formalism has
made Bourbaki's work difficult to read even for mathematicians. Bourbaki starts from
defining a species of structures  E  as a text that makes sense within the context of a
particular mathematical theory T (containing the theory of sets). The text E provides
a formal description of how to construct any structure s of the species to be defined.
First, one must point out a finite number of principal and auxiliary base sets – as the
“building materials” for the construction. At least one principal set is always needed,
while auxiliary sets, which  may be absent,  remain a fixed component of the
procedure applicable to variable principal sets. Secondly, one needs a prescription of
how to construct the set whose elements will be structures of the given species, that
is, one must state what actions and in what order have to be performed on the base
sets and sets obtained from them at each successive step of the construction. The
proposition which states that s is an element of the set obtained at the end  is called
the typical characterization of the species of structures E. The two set-theoretic
operations that Bourbaki considered sufficient for constructing all species of structure
are: forming the Cartesian product of two sets and taking the set of all subsets of a set.

Thirdly, the definition of a given species of structure may include axioms, or
certain conditions to be met by the base sets and  s constructed from them. The double
role of axioms consists in that they provide the starting point for deducing theorems
and at the same time delimit the class of objects  which the theory applies to. The
theory obtained by adding to T the axioms and the typical characterization of E is
called the theory of the species of structure E.
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Assume now, for the sake of simplicity, that  only one base set X is used. We say
that S is a structure of the species E on a fixed set E, or that E is endowed with a
structure S of the species E, if S has the required typical characterization and E and
S satisfy the axioms of E. The ordered pair (E,S) is called the mathematical object
over the set E with structure S.

1.5.2. We give now some examples of species of structure (read 1.1.5 again to
recall few elementary set-theoretic terms that re-appear below). Let the statement
r0-(X×X) be the typical characterization for the species of structures to be defined.
That is, r is an element of the set constructed by first forming the Cartesian product
X×X and next taking the set of its subsets -(X×X). A structure R on E of such a
species is called a binary relation on the set E. The mathematical object (E,R) is
called a directed graph (or, briefly, a digraph) with the point set E and the arc set R.
We will consider later on only finite digraphs defined by  one axiom which states that
X is a finite set.

Binary relations are just one kind of structures. Two other important kinds are
algebraic structures and topological structures, dealt with by algebra and topology
being two basic disciplines that provide most fundamental terms for building other
parts of the “edifice of mathematics.”

The key term of algebra, a binary operation on a set X,  is defined as any mapping
of the product X×X into X. Thus, the typical characterization has now the form
s0-((X×X)×X) and the first axiom, common to all particular algebraic species of
structure, states that s, or a relation between X×X and X, is a mapping, that is, to any
ordered pair (x,x') there corresponds one and only one element x" in X.

Let � denote an operation on E. Its result for an ordered pair (e,f) of elements of
E will be written e�f  instead  of �(e,f). If   e�f=f�e, for any e,f 0 E, the operation �
is said to be commutative. It is said to be associative if e�(f�g)=(e�f)�g, for any
e,f,g 0E. An element j0E such that j�e=e�j=e, for any e0E, is called a neutral element
or a unit; every associative operation may admit of only one element with this
property. Any set E endowed with an associative operation having a neutral element
is called a semigroup and  a group if it is assumed besides these axioms that every
element  e of E has an inverse: an element  e' in  E such that e'�e=e�e'=j. By
associativity, the inverse of e is unique; it is written e  or !e (for commutative-1

operations).
To give an example, let us take as E  the set of all permutations of a fixed set A

(permutations are 1–1 mappings of A onto itself) and endow E  with the operation that
is defined as the composition of mappings. The unit for this operation is the identity

A Amapping i : i  (a)=a, for any a0A. Another  group, probably best known to the people
who equate mathematics with numerical calculations, is the set of integers ø with
addition as operation and 0 as neutral element. An even simpler example of a
commutative group is the set {0,1} endowed with the operation + defined by the
formulas: 1+1=0+0=0, 1+0=0+1=1. The elements 0 and 1 are also written as signs %
(plus)  and ! (minus), respectively. Under the multiplicative notation (used instead
of the additive one that is customarily preferred for commutative operations) the
formulas defining the group operation are: %@%  = !@! =  %, %@! = !@% = !. 
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1.5.3. Group is one of few pivotal concepts of modern mathematics. The
importance of this particular species of structure lies not only in that groups are worth
studying in themselves but even more in that the theory of groups is a tool for
analyzing all species of structure, namely, for any mathematical object  O=(E.S), you
can define a group whose elements are those 1–1 mappings of E onto itself which
“preserve structure” S.  Such mappings are called  “automorphisms” or “symmetries”
(see Weyl  1980) of the given mathematical object. The automorphism group  Aut(O),
also called the symmetry group of O,  is a subgroup of the permutation group from
which it  “inherits” the operation owing to the fact that the composition of two
automorphisms is an automorphism and so is the inverse of any automorphism.

An automorphism of (E,S) is defined as an isomorphism of the object with itself.
To explain what is meant by an isomorphism of two mathematical objects (E,S)  and
(E',S') with structures of the same species E,  let us say first that the term
“isomorphism” will be referred to any bijective mapping  n of E onto E' such that  the
correspondence between elements of E and E' induces a correspondence between the
structures S and S' in these sets. The meaning of the latter correspondence will
become clear when we define the structure  transported from  (E,S) to a set E'  by a
bijective mapping  n of E onto E'  (in particular, E=E') – as a structure (of the same
species, that is, having the same typical characterization and satisfying with E' the
same axioms) that is constructed from S with the use of n.  How does the transported
structure – it is noted  n(S) and also known as the image of S through n – depend  on
S and n?  I will not try to provide a general formulation that would fit any typical
characterization and hence would be too complicated. Instead, let  me show a simple
example. Let (E,R) be a directed graph. The relation transported from (E,R) to E'
through n, or the image n(R) of R through n, is the subset of E'×E' which consists of
all ordered pairs of the form (n(e),n(f)), for any (e,f)0R.

Two mathematical objects (E,S) and (E',S') with structures of the same species are
said to be isomorphic if there exists a bijective mapping n of E onto E' such that
S'=n(S); the mapping n is then called an isomorphism of (E,S) and (E',S'). Thus, two
digraphs (E,R) and (E',R') are isomorphic if and only if there exists a bijection n such
that R'=n(R), that is, (n(e),n(f))0R' for any (e,f)0R  and for any (e',f')0R', e'=n(e) and
f'=n(f) for some e,f such that (e,f)0R.

Two groups, E with operation � and E' with operation �' are isomorphic through
n if and only if n(e�f)=n(e)�'n(f) for any e,f in E. For example, the exponential
function with the base  p  (p is a fixed real number such that p>0 and p�1) –  it assigns
to any real number x the number  y=p >0  – is a bijective mapping of the set of all realx

numbers onto the set of real numbers greater than 0. The first set and the second  set,
endowed, respectively, with addition and multiplication of real numbers,  are groups.
The exponential mapping is an isomorphism of these groups  in virtue of the formula
p =p p .  The inverse isomorphism, the mapping of (0,4) onto (!4,4) given by thex+y x y

pformula x=log y, is known as the logarithmic function. The formula p =1 illustrates0

the fact that any isomorphism involves a  correspondence between “special” elements
of two mathematical objects..

1.5.4. We consider now the species of structure of which the typical
characterization is s0-(-(X)) or equivalently sd-(X). A mathematical object (E,H)
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over the base set E with structure H is called a hypergraph. The image of a family H
of subsets of E through n consists of those subsets of E' which can be represented in
the form  n(A)={n(a): a0A}, for all A in H. This species of structure has 3  important
subspecies, each determined by certain axioms imposed on H, the respective
mathematical objects being called graphs, voting games, and topological spaces. 

The structure  W   of a voting game (E, W  ) with assembly of voters E is a family of

subsets of  E – called winning coalitions – that satisfies the following axioms: (1) W  �i
(there exists at least one winning coalition); (2) For any C, C ' dE such that CdC ', if

C0W , then C'0W , that is, any set of voters containing a winning coalition is also a

winning coalition;  (3) For any CdE, if C0W , then E!C óW . The third condition, which

means that the non-members of winning coalition do not form a winning coalition,

makes it impossible to pass  simultaneously two contradictory bills, one supported by

the members of C and the other supported by the members of E!C.

Graphs are hypergraphs such that every element in H has 1 or 2 points. While the
study of  graphs and voting games is usually associated with applied mathematics, the
theory of topological spaces is counted among most fundamental theories of  “pure”
mathematics. A topological structure in a set E can be defined as a collection  T  of
subsets of E – they are called open sets  – which meets the following axioms: (1) The
empty set i and E are in  T ; (2) If A0T and B0T,  then A1B0T  (the intersection of any
two open sets is an open set); (3) The union of any collection of open sets is an open
set.

That's how unbelievably simple are conceptual foundations of  topology – the
mathematical discipline that formalizes in the broadest way the notions of closeness

nand convergence.  We say that an infinite sequence (e ) of points of  E converges to
a limit e if in every open set containing point e there lie almost all terms of the
sequence, where “almost all” means “all except at most a finite number.”  Any open
set containing a point is called its neighborhood; intuitively, it is a set points which
are “close” to a given point, however the degree of closeness may not be specified at
this level of generality. If for any two distinct points there exist disjoint
neighborhoods – a topological space with this property is called a Hausdorff space –
any sequence may have no more than one limit. 

Although the topology axioms should be intelligible to everyone familiar with
elementary set-theoretic terminology, you may feel uneasy in a too abstract
conceptual setting where intuition supported by sensual experience may fail. That's
why those who, like  Fararo (Mathematical Sociology. An Introduction to
Fundamentals, 1973),   embark on teaching modern mathematics to sociologists,
begin from introducing  “visible” topological spaces, such as the  2- or 3-dimensional
Euclidean space, and stop at  defining a general metric space,  the species of structure
that is constructed with the help of the set úof real numbers.

A metric or  distance on a set E is defined as a mapping D of E×E into ú satisfying
the following axioms: (1) For any e,f0E, D(e,f)=0 if and only if e=f; (2) D(e,f)=D(f,e),
for any e,f0E; (3) D(e,f)#D(e,g)+D(g,f), for any e,f,g0E. These axioms imply that the
distance of any two points is greater than or equal to 0 (0=D(e,e)#D(e,f)+D(f,e)=
2D(e,f), hence D(e,f)$0).
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The familiar example of a metric space is the set ú   of n-element sequences ofn

1 n 1 nreal numbers with the Euclidean distance. For x=(x ,ÿ,x ) and y=(y ,ÿ,y ), it equals

i ithe square root of  E(x !y )  and is interpreted geometrically as the length of the2

segment of the straight line  joining points x and y. Then, for any three points in ú ,n

the sum of the lengths of any two sides of the triangle with these points as vertices is
greater than o equal to the lengths of the third side. This well known property of the
Euclidean distance has become the third axiom of a more general  theory, the theory
of metric spaces, in which “closeness” is given a quantitative meaning. Two
definitions link this theory to general topology. First, the open ball of radius r>0
centered at a point e is defined as the set of points which lie at distance smaller than
r from e, symbolically, B(e,r)={f0E: D(e,f)<r}. Next, open sets are defined as the
family of those subsets A  of E which satisfy the condition: for every point a in A,
there exists an r>0 such that  B(e,r)dA. In particular, any open ball is an open set. 

1.5.5. The set ú is itself endowed with three interrelated structures: a relation
written as # (sharp inequality r<r'  is defined by the condition r#r' and r�r'), and two
algebraic operations: addition (+) and multiplication (@). The axioms of the theory of
real numbers are divided into five groups.

(1) The axioms of continuous order are the following: 1.1. For any r,s0ú, if  r#s
and s#r, then r=s; 1.2. For any r,s,t0ú, if r#s and s#t, then r#t; 1.3. For any r,s0ú,
r#s or s#r; 1.4. (the axiom of continuity) For any nonempty subset S of  ú, the set
M(S) of upper bounds of S –  it is the set of all  r0ú such that  s#r, for any s0S – is

o oempty or contains the smallest element, or an element r  such that  r #r, for any

or0M(S)); r  is called the supremum or least upper bound of S.
(2) Addition is characterized by four axioms which jointly state that (ú,+) is a

commutative group.
(3) The next four axioms pertain to multiplication as an operation restricted to the

set ú!{0}, where  0 stands for the neutral element for addition. It is postulated  that
(ú!{0}, @) is a commutative group.

(4) The axiom connecting two operations in ú: (r+s)@t=r@t+s@t,  for any r,s,t0ú.
(5) Two axioms which relate order to addition and multiplication: 5.1. For any

r,s,t0ú, if s#t, then s+r#t+r; 5.2. For any r,s,t0ú, if 0#r and s#t, then r@s#r@t.
The set ù of natural numbers can be treated as a subset of  ú,  the neutral elements

of the groups (ú,+) and (ú!{0},@) being identified with natural numbers  0 and  l.
The axiomatics of real numbers is given here after the notes I wrote up, attending

the course of mathematical analysis, or la mathématique tout court, by Professor
Stanisław  Łojasiewicz. The lecturer just mentioned Cantor and Dedekind's methods
for demonstrating the existence of a mathematical object (E,#,+,@) satisfying the
axioms – such an object is termed a continuous ordered field – yet he did not spare
his students a detailed proof of a theorem that appears to every mathematical
structuralist  more important than a particular method of constructing real numbers.
The theorem states that any two continuous ordered fields are isomorphic.
“Uniqueness up to isomorphism” is required of a mathematical object in order that its
base set could serve as auxiliary set in constructing complex species of structure.

The set ú, which is needed to define metric space, plays the auxiliary role in
defining many other species of structure. A real vector space is a commutative group
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(E,+) with a mapping of ú×E into E. This additional structure – termed  multiplication
of vectors (elements of E) by scalars (real numbers) – is assumed to satisfy the
following axioms: "(e+e')="e+"e, ("+$)e="e+$e, 1e=e. The expression

1 1 n n 1 n" e +þ+" e   is called a linear combination of vectors e ,…,e . The real vector space
is said to be finite-dimensional if  for some n there exists a collection of vectors

1 ne ,…,e   such  that any e0E equals a linear combination of these vectors with some

1 nscalar coefficients " ,…," . The minimum n for which such a representation of every
vector is possible is called the dimension of the vector space E. The familiar example

1 nof an n-dimensional real vector space is the set ú  with the sum x+y of x=(x ,…x )n

1 n 1 1 n n 1 nand y=(y ,…x ) defined as (x +y ,…,x +y ), and "x as ("x ,…,"x ). The length of
any vector x0ú  is defined as the Euclidean distance of x from 0=(0,…,0).   n

1.5.6. The notion of isomorphism turns out in a sense more fundamental than that
of structure. While you can't define a given species of structures unless you specify
a concrete construction procedure, often you have an option to do it in few ways
which differ with typical characterization and/or axiomatics, yet in each case the same
1–1 mappings become isomorphisms. More formally, let E and I be two species of
structure with the same base sets. Two species of structure are said  to  be equivalent
if:  (1) One can define a procedure applicable to any structure s of species E of which
the output is a structure t of species I;  in particular, the axioms of I must be
deducible from the axioms of E after defining the terms used in the former by means
of those occurring in the latter; (2) There is an analogous procedure for constructing
a structure s(t) of species E from a given structure t of species I; (3) The two
procedures are inverse of each other, which means that by applying the second
procedure to t(s) we obtain again s, and so is for the composition of the two
procedures in the opposite direction.

For example, the structure of an undirected graph with point set E can be defined
equivalently as a symmetric relation RdE×E or as a family Ld-(E) such that every
element of  L has 1 or 2 points. The set L of lines is obtained from R by replacing
every ordered pair (e,f) in R with the subset {e,f} of E. Since two arcs (e,f) and (f,e)
in R yield the same edge in L(R), the reverse procedure must assign to {e,f} both (e,f)
and (f,e) so that the relation R(L) be symmetric. An undirected graph was defined
earlier (1.2.6) in the second way. We  added there the condition that L does not
contain a loop, or an edge of the form {e}. Under the relational definition, this
condition takes the form: R is irreflexive, that is, for any e0E, (e,e)óR.

If E and I are equivalent, then any 1–1  mapping n of E onto E' is an isomorphism
of the objects (E,S) and (E',S') with E-structures if and only if n is an isomorphism of
the objects (E,T) and (E',T') with I-structures obtained from S and S'.

Can a definition of isomorphism be stated without explicit reference to the
structures of the objects (E,S) and (E',S')? Yes, but one needs first to introduce the
notion of “morphism” as a mapping of E into E'. Then an  isomorphism is defined as
a morphism having an inverse, the inverse of a morphism being a morphism whose

Ecompositions in either order with the given morphism yield the identity mappings i

E'and i . Morphisms appear in Bourbaki's work as special mappings that enable
comparing mathematical objects having structures of the same species. This  may
mean, in particular, that one object is “immersed” in the other in the sense of being
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isomorphic with its “subobject” or one is the other's  “image” preserving some
“structural” characteristics of the “original.”

1 1 1 2 2 2Let O =(E ,S ) and O =(E ,S ) be two mathematical objects with structures of the

1 2same species. The set of morphisms from O  to O  is defined as a certain subset of the

1 2set of all mappings of E  into E . In defining this subset, one has to make sure that
two conditions be met: (1) the composition of two morphisms which can be composed

1 2with each other should be a morphism, that is, if n is a morphism from O  to O  and

2 3 3 3 1R is a morphism from O  to O =(E ,S ), then RBn should be a morphism from O  to

3 1 2 1 2O ; (2) for any 1–1 mapping n of E  onto E , n is an isomorphism of O  and O  if

1 2and only if n is a morphism from O  to O  and the inverse mapping n  is a morphism-1

2 1from O  to O . As these conditions may be met by various classes of mappings, the
notion of morphism, unlike that of isomorphism, is not always determined uniquely
by the definition of a given species of structure. Hence, quite naturally,  there
emerged the idea that objects, morphisms and composition of morphisms be
introduced as primitive terms of a theory that would be able to render more
adequately the substantive unity as well as internal diversity of the mathematical
universe.

1.5.7. Such a theory, known a the category theory, which was being developed
parallel to Bourbaki's theory of structures, “has had – to quote two Polish
mathematicians (Semadeni and Wiweger 1978: 13) – great influence on today's
formulations of abstract mathematical theories and  maybe we shall witness a
breakthrough similar to that brought about by Cantor's ideas several decades ago.”
The conceptual apparatus of the category theory has also penetrated into applied
mathematics, including social network analysis (Lorrain  and  White 1971). The cited
paper inspired Fararo (1973: 564–569) to include in his book some information on
categories. 

A  category C is defined by specifyng the class Obj(C) of its objects and the class
Mor(C) of its morphisms, also called arrows for their graphical representation. Mor(C)

1 2is assumed to be the union of  the sets Mor(O ,O ) over all ordered object pairs

1 2 1 2 1 2(O ,O ). The elements of Mor(O ,O ) are called morphisms from O  to O . For any
two distinct ordered object pairs, the respective morphism sets are assumed to be
disjoint, which implies that to any morphism there corresponds exactly one ordered
pair of objects, referred to, respectively, as the domain and codomain of a given
morphism. 

The third primitive term of the category theory is the composition of morphisms.

1 2It is defined for any two morphisms n and R such that n0Mor(O ,O ) and

2 3 1 3R0Mor(O ,O ) as a morphism,  noted  RBn, from O  to O .

   R                          n

3 2 1O O O
   

RBn

The composition of morphisms is assumed to satisfy the axiom of associativity, which
property is defined similarly as for mappings or semigroup operations. The last axiom

Ostates that for any object O there exists a morphism 4  from O to O  such that
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O ORB4 =R, for any morphim R with domain O,  and  4 Bn=n, for any  morphism n with
codomain O.

The classical Zermelo-Fraenkel set theory may not suffice as ontological basis of
the category theory as the latter must handle “larger” entities than ordinary sets. Since
an attempt to speak of the set of all sets leads to a contradiction, in order to accept the
existence of a collective entity which consists of all sets, one has to resort to a richer
mathematical ontology that starts from the notion of a class and distinguishes between
sets and  proper classes, or classes that are not sets.

However the category theory absorbed most of results of Bourbaki's theory of
structures, it did not invalidate the latter. A bridge between the two theories is the
concept of  a concrete category, or a category in which every object is built over a set,

1 2 1 2called its base set, and any morphism from O  to O  takes the form (O ,n,O ), where

1 1 2 2n is a mapping of the base set   E   of O  into the base set E  of O . Concrete are all
categories whose objects are sets endowed with structures of the same species as well
as the category of sets with “bare” sets as objects and all mappings as morphisms.

A shift of emphasis from objects to transformations is not the only result of the
impact of the category theory on all mathematics. It is even more important that any
category  can be considered as macroobject which can be “transformed” into another
macroobject of sort. To make inter-category comparisons possible, one only needs to
define a counterpart of morphism. A covariant functor  from a category C to a
category  C'  is defined as a pair of mappings (in a generalized meaning) both noted
with the same symbol M. The  first of them assigns to any object O in C  the object
M(O) in C' , while the second transforms Mor(C) into Mor(C') in such a way that: (1)

1 2 1the image M(n) of any morphism  n from O  to O  is a morphism from M(O ) to

2 O M(O)M(O ); (2) the composition of morphisms is preserved by M; (3) M(4 )=4 .

1.5.8. Our inquiry has reached the point when we are in a position to clarify the
meaning of mathematical structuralism. On all three levels of analysis, that is, the
intra-object level, the inter-object or intra-category level, and the inter-category level,
mathematics deals with structural or  invariant properties, intuitively, those properties
that do not depend on particular intrinsic nature of entities studied at a given level.
Recall that properties have been identified (see 1.2.1) with variables taking 1 and 0
as the only values telling us, respectively, that a unit of analysis (which on the
intermediate level is a mathematical object)  does or does not have a given property.

Let V be a variable which assigns numerical values to the elements of some
subclass D  of Obj(C).  Structural variables, also called structural parameters or

1 2invariants, are defined by the condition: V(O )=V(O ), for any two isomorphic

1 2objects O  and O  in D. On the inter-category level, structural variables are defined
as those whose values are preserved by special functors called bijectors or category
isomorphisms. I will skip a more detailed explanation to avoid getting involved in
more “metatheory” than needed by ordinary mathematicians whose research hardly
ever goes beyond the intra-category level or even the lower level, or that of a  fixed
set (often called a “space”) endowed with one  or few interrelated structures, ú  withn

metric and vector structure being a familiar example. 
On that lowest level, structural analysis consists in the study of structural variables

defined on the set of “parts” of  a given mathematical object. “Structural” means now
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“preserved by the automorphism group acting on the set of parts.” To give a precise
meaning to this statement, we must define the term “action of a group on a set.”
Before we do it, we show few examples of  global structural variables. The qualifiers
“global” and “local” will be used here to mark the distinction between variables
defined on the intra-category (inter-object) level and those defined on the intra-object
level. Some structural global variables, such as the number of  elements of  the base
set E of an object O=(E,S), are defined similarly in any concrete category, more
exactly,  in its subcategory made up of  all objects with finite base sets. If a set A is
finite, that is, if A has as many elements as the set {1,…,n}, for some  n0ù, we will
use the symbol |A| to denote cardinality (number of elements) of A. Any isomorphism
of the objects  O=(E,S) and O'=(E',S') is 1–1 mapping of E onto E'. Thus, if E and E'
are finite sets, we have |E|=|E'|.

A “more structural” (dependent on S) example of a universally applicable global
structural parameter is the number of automorphisms of O. To prove that the
condition defining structural variable is met, notice that if objects  O and O' are
isomorphic, so are their symmetry groups Aut(O) and Aut(O'). If E and E' are finite
sets, Aut(O) and Aut(O') are also finite and  |Aut(O)|=|Aut(O')|.

Many global structural variables are specific to particular categories. Dimension
is a global structural parameter in the category of finite-dimensional real vector
spaces. Moreover, any two real vector spaces with the same value of  this parameter
are isomorphic; hence, every n-dimensional real vector space is isomorphic with ú .n

Thus, dimension is an example of a complete invariant.
In  the category of directed graphs, the simplest global structural variables are the

number of p points and the number q of arcs of a digraph. These two structural
parameters  do not form a complete set of invariants because, for most values of p and
q, there are many nonisomorphic digraphs  (E,R) such that |E|=p and |R|=q.

1.5.9. There exist categories in which any two objects are isomorphic. The
category of continuous ordered fields is the example we have already discussed
(1.5.5). Such a category, as it is often said, has “one object up to isomorphism.” In
most concrete categories, however, Obj(C) consists of infinitely many nonisomorphic
objects. In a concrete category, any two objects with finite base sets E and E' can't be

1 2isomorphic if |E |�|E |. Hence,  we can only try to count equivalence classes  for the

Erestriction  of the  isomorphism relation to  the set Obj (C) of all category objects
with the same finite base set E. For convenience, let me refer to the elements of  this
set as configurations. In my old paper (Sozański 1992), I proposed structural

Eclassification as the term to denote the partition of  Obj (C) into isomorphism classes.
Fararo (1973: 122) applied the same construction – very general, as it were –  to

the set  {(E,R): RdE×E) of all directed graphs having E as their common set of points.
His decision to term “structures” the isomorphism classes of “relational systems”
looks like an attempt to formalize Nadel's concept of “structure as form” (1.4.1). I
think it's better to stay with the understanding of  structure (in particular, a binary
relation) as a thing constructed from things – from points of a fixed set. When two
objects obtained by endowing a set E with a structure of the same species are
isomorphic, I will say that they have the “same structural form” or are “structurally
similar” instead of saying that they have the “same structure”. Thus, the sets which
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make up a structural classification will not be called “structures” but structural forms.
My second terminological choice is to see in relations a special kind of structures
rather than reserve the term “structure” for relations only.

We illustrate the notion of structural classification using as configurations all
3-person voting games (see 1.5.5). Let   E={1,2,3} denote  the assembly of voters.
Since |E|=3, we have |-(E)|=2 =2 =8 and similarly, |-(-(E))|=2 =2 =256. It is not|E| 3 |-(E)| 8

difficult to verify that only 11 out of 256 3-point  hypergraphs satisfy the voting game
axioms given in 1.5.4. These 11 configurations fall under 5 isomorphism classes.
They formally describe all “structurally distinct rules” (recall an equivalent
formalization given in 1.3.8) any 3-person group can use for decision-making.

Structural form (1) is a formal model of the consensus rule. To decide on any issue, all

1members of the assembly  must vote unanimously. Formally, the voting game (E,W  ),

1the unique element of form (1),  has E as the only winning coalition, that is, W  ={E}.

2Form (2) is also represented by a single voting game with W  ={{1,2},}{1,3},{2,3},E}.

It is  known as the simple majority rule. Form (3) consists of 3 dictatorial decision

3 4 5systems with W  ={{1},{1,2},{1,3},E},  W  ={{2},{1,2},{2,3},E}, W  ={{1},{1,2},

{1,3},E}. These three isomorphic voting games differ with person  occupying the

dictatorial position  (i  is called a dictator if {i} is a winning coalition). 3  duumvirate

6 7 8systems with W  ={{1,2},E},  W  ={{1,3},E},  W  ={{1,3},E} form structural form

9(4). In W  ={{1,2}, {1,3},E}, voter  1 is the only group member who is in a position

to veto any decision: no winning coalition can form without his consent. The other 2

10 11configurations of form (5) are: W  ={{1,2},{2,3},E},  W  ={{1,3},{2,3},E}, with

actor 2 or 3 in the vetoer position.   

1.5.10. It is usually much easier to calculate the number of configurations than that
of structural forms. The second problem can often be solved by applying a formula
that belongs to the theory of “action of a group ' on a set X.” The theory's
combinatorial implications, much deeper than the results we recall below (after Lang
1970), are due to Pólya (the source text usually referred to is De Bruijn 1964).

The action of a group ' on a set X is defined as a mapping of  '×X into X that
assigns to any ordered pair ((,x) an element of X, written  (x, and satisfies the
following axioms:

(1) 4x=x, for any x0X, where 4 is the neutral element of '; 
(2) ((�(')x=(('x, for any (, ('0', x0X, where � stands for the operation in '.

The action of 'on X is used to define the following relation on X:

x~x' ](df)  x'=(x,  for some (0'.

Its reflexivity and transitivity follows from the axioms of group action. To prove that
the relation is symmetric, being therefore an equivalence, suppose that x~x'. By
applying  (  to both sides of x'=(x, we get  ( x'=( (x. Since the right hand side-1 -1 -1

equals (( �()x= 4x=x, we conclude that x=( x', that is,  x'~x.-1 -1

  The equivalence classes of ~ are called orbits of elements of  X. The orbit of x is
the set of  the form Or(x)= {(x: (0'}. Note that Or(x)=Or(x') if and only if x~x'. The
partition of X into orbits induced by the action of ' on X will be noted  X/'.

xx' xxFor any two elements x and x' of X, let '  = {(0': (x = x'}. The set St(x)= ' ,
is a subgroup of  ', which means that St(x) is a non-empty subset of ' (40St(x)) and
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for any (,(' 0 St(x), (�('0St(x) and  ( 0St(x). St(x) is termed the stabilizer of x. If-1

' and X are finite sets, then, for any x0X, the following formula holds true

*'* = *Or(x)*@*St(x)*

The proof begins from the observation that ' is the union of its pairwise disjoint

xx'subsets of the form  ' , where x is a fixed element of X and x'  runs over the orbit of

xx'x. Hence, for any x, *'*equals the sum of *' * with x'0Or(x). The next step is to

xx' xxshow that if  x'0Or(x), then *' *= *' *. If  x'0Or(x), then, for some ('0', x'=('x. By

xx xx xx'assigning ('�( to any ( in ' ,  we get a 1–1 mapping of  '  onto ' .

(
For any (0',  let X  stand for the set of those points of X that are not “moved” by

(
(, that is, X  = {x0X: (x=x}. The set of all ordered pairs ((,x) such that (0',  x0X,

(
and (x=x can be written either as {((,x): (0', x0X } or as {((,x): x0X, (0St(x)}.

(
Hence, the number of its elements can be expressed as the  sum of *X *  over all ( in
' or the sum of |St(x)| over all x in X. Since |St(x)|=|'|/|Or(x)|, the second sum equals
*'**X/'*. On equating the two sums, we arrive at the formula 

known as Burnside's lemma. Thus, to compute the number of orbits  one only needs
to determine, for any (0',  the number of solutions of  the equation (x=x. Note that

( (
the solutions are “fixed points” of the mapping T : X6X, where T (x)=(x, for any x0X.
My papers (Sozański 1980, 1992) on “social combinatorics” show few examples
when the calculation task is feasible.

1.5.11. Let us take now as ' the group of permutations of a set E and as X the set
of configurations based on a finite set E. Let the result of action of a permutation n
on a configuration (E,S) be the configuration (E,n(S)), where n(S)) is the structure
transported from the object (E,S) to the set E through n. It is easy to notice that the
stabilizer of a configuration is its symmetry group and the formula *'*=*Or(x)**St(x)*
takes the form n!=*Aut(O)**Or(O)*. Hence, the size of the orbit of an object varies
inversely with the size, ranging from 1 to n!, of its symmetry group. If *Aut(O)*=n!
(every permutation of E is an automorphism of O), then *Or(O)*=1 (O is the only
element of the orbit of O).

Since the orbits coincide with structural forms, Burnside's formula can be
employed to count them. The number of structural forms increases very fast with the
cardinality of  the base set. Hence, the structural classification is usually a too fine
partition to be practically useful. Configurations and structural forms are therefore
further divided into broader sets corresponding to the values of some structural
parameters, including those having an “empirical meaning.” Combinatorial issues
associated with the mathematical notion of structure seem at first sight far from
empirical applications. However, many problems had their origins outside pure
mathematics, to mention just one classical example: the problem of determining the
number of isomers of a chemical compound.

1.5.12. We shall close our panoramic overview of the mathematical universe with
showing how structural analysis works on the level of a fixed  mathematical object
O=(E,S). Analysis of any thing consists in discerning in it certain parts which can be
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compared with one another with respect to various properties. Which properties shall
we call “structural”? We can take as parts of O the elements of the base set E, its

Osubsets or structured subobjects with structures “inherited” from O. Let X  denote the
set of parts of a given type. Having defined the action of the automorphism group

OAut(O) on X , we define local structural variables as those local variables that are

Oconstant on the orbits generated by the action of Aut(O) on X . 

OIn the case of X =E, the action of Aut(O) on E is defined by the formula "e="(e),
for any "0Aut(O) and any e0E. To give an example of a local structural parameter,
consider a hypergraph (E,H) and assign to any e0E the number of edges in H
containing e. This parameter, when applied to a graph, is called the degree of a point
(see more in 1.2.6). For a voting game,  it provides us with a simple measure of voting
power. The more winning coalitions an actor is a member of, the greater his voting
power. 

The outdegree of a point e in a directed graph (E,R) is defined as the number of
arcs having e as the common initial point, symbolically, od(e)=*{f0E: (e,f)0R}*. The
indegree of e is defined similarly: id(e)= *{f0E: (f,e)0R}*. These two local structural
parameters are probably best known to sociologists because they have been used since
1930s in theory and research on small groups. When they were discovered
independently by Moreno and his collaborators, the mathematicians, who had by then
considered graph theory as a minor chapter of algebraic topology, were not yet ready
for cooperation with sociologists. Since the publication of Structural Models by
Harary,  Norman, and Cartwright (1965), the exchange of ideas has become regular
practice, social scientists being more and more active side, to mention only
Markovsky, Willer, and  Patton (1988) who  invented Graph-theoretic Power Index.
It is a local structural parameter designed for use in graphs modeling the
communication structure in network exchange systems.

OThe action of Aut(O) on  X =-(E) is defined by the formula  "A="(A), for any
AdE.  Let O be a set  E with a metric D. A subset A of E is said to be  bounded if
there is a number r>0  such that D(a,a')#r, for any a,a'0A. Boundedness is a structural
property of the subsets of a metric space. To make this statement meaningful and
prove it, we need to know what is  isometry, or isomorphism of metric spaces  (E,D)
and (E',D'). It is a 1–1 mapping n of E onto E' such that  D'(n(e),n(e')=D(e,e'). If A is
bounded and "0Aut(O), then  "(A) is also bounded because  D("(a),"(a'))=D(a,a')#r.

The so called Erlangen program, which is recognized as the first conscious
manifestation of  structuralism in mathematics, specified  that  the objective of
geometry should be the study of invariants of various transformation groups acting
on the subsets of the Euclidean space or other spaces. In the social sciences, one can
rarely find comparable specificity in formulating the principles of structural analysis,
albeit almost all theorists have something to say or feel obliged to say something
about “structure.” The mathematicians seldom speak of “structure” in general. They
study relations, operations, and topologies often without being aware that they deal
with various kinds of structure.

Every mathematical discipline reaches the stage of conscious structuralism with
defining isomorphism for the mathematical objects to be studied. New disciplines
may need some time to develop their ways of structural analysis. When I worked  on
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a special kind of games called “minimal social situations” (Sozański 1992), I could
have listed just one structuralist paper (Rapoport and Guyer 1965), the one concerning
structural classification of similar configurations: “2×2 matrix games with ranked
payoffs.”     

1.6. Mathematical modeling of empirical systems

1.6.1.  It is clear that the statements like Nadel's definition of structure suggest that
the mathematical understanding of structure is not alien to the social sciences. When
you reflect on how to implant mathematical structuralism in an empirical science,  the
first idea that springs to mind is to define the subject matter of the given discipline as
a “category” of “structured” empirical objects. The strategy of finding empirical
analogues of mathematical concepts, which  reminds the second variety of heuristic
naturalism (see 1.3.20), requires, first of all, that a notion of “structural similarity” be
defined for real-world complex wholes. Such an empirical counterpart of
isomorphism –  a notion that is  needed to define structural variables – would differ
from isomorphism defined in mathematics  in that it would not completely abstract
from the stuff which empirical entities are made of.

  An alternative approach is based on modeling empirical objects by mathematical
objects. Structure and isomorphism, albeit they indirectly refer to empirical objects,
retain then their strict mathematical meaning because they pertain to mathematical
objects that are models of empirical objects.

Minimal syntactic codification of any scientific language consists in pointing out
specific terms and contexts, considered meaningful, in which these terms occur
together with nonspecific (logical and mathematical) terms and possibly colloquial
expressions which cannot be dispensed with even in mathematics. At the next step,
a formal language is created by stating explicit rules for producing well-formed
statements. The language of any mathematical theory not only  admits of complete
syntactic formalization, but it  “forces” for itself a semantic interpretation under
which “things” that correspond to “signs” are set-theoretic constructs. As I have
already argued,  sets made up of people do exist in the real social world. Often they
are quite concrete tangible entities, like my 3-person nuclear family (see 1.3.21). If
so, why not to use set-theoretic ontology to codify the semantics the language of any
empirical  discipline as well? Although a mathematical object is constructed primarily
so as to get an interpretation of a formal language, it may stand at the same time in a
modeling relation with some empirical objects. If an empirical object is conceived as
if it were itself a mathematical object, say, if a social group is equated with a set of
people endowed with a binary relation in the mathematical meaning of term, then the
correspondence between the model (made up of more abstract material, say, natural
numbers that stand for group members) and the modeled object becomes a regular
isomorphism – if the model reflects “faithfully” the “nature” of the empirical object,
or as a  morphism if  the model in a sense simplifies the reality.

Nevertheless, one must not confuse the subject matter of  logical semantics, the
branch of logic  that deals with  set-theoretic interpretations of formal languages  with
that of formal methodology of empirical sciences. The relationship between
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nonmathematical reality and its mathematical  representations may not be completely
described in a purely logical metalanguage. The world of experience and the world
of mathematics have, to be sure, more in common than it appears to  many simple or
refined minds,  yet one must not forget that a social group differs in its mode of
existence and properties from a set of real human beings or even a relational system
whose elementary components come from the world out there. Similarly,  the physical
space which contains our bodies is more mysterious than  ú , or its mathematical3

representation obtained by introducing a coordinate system. Material objects
mentioned by Nadel (“crystal, wooden block, or soup cube”; see 1.4.1) do not
resemble in many respects the subset of  ú  which is their geometric model (see3

1.3.21). Yet “what can be said” about their common form “can be said clearly” only
in the language of the mathematical discipline that deals with ú  and its subsets.3

Inventing mathematical models engages both creative abstract thinking and
physical contact with a piece of empirical reality. First, a mathematical representation
must be thought up to formally describe the shape of a material object. Next, the
values of some empirical variables need to be measured to assess adequacy of the
chosen representation as well as to obtain a parametric description of the object.
“Describing the appearance of an object, or giving its measurements” appears in
Wittgenstein's list of language games just past “giving orders, and obeying them” (see
1.3.18). Mathematical modeling of empirical systems is the best strategy in the
epistemic language game – insofar as the players' aim is to produce objective
knowledge of the reality they are going to study. 

1.6.2.  A mathematical model is recognized as empirically valid if it enables
formulating and testing hypotheses on certain properties or behavior of the modeled
class of empirical systems. To state a hypothesis, one needs  to define first a set of
variables (see 1.2.1). It is their nature that is taken into consideration,  above of all,
in metatheoretical analyses of  formalized empirical theories and paradigms. Which
paradigms and theories shall be called structural?  I propose a  simple criterion: it is
the use of structural variables – alone or along with nonstructural variables. It follows
from the definition of the attribute “structural” as “preserved by isomorphism” – with
the term “isomorphism” borrowed from the basic mathematical glossary – that
“structural approach” in empirical sciences acquires a definite meaning as soon as a
mathematical representation has been devised for a given class of empirical systems.
Both structural and nonstructural variables describe differences between empirical
objects, but in the case of  structural variables a numerical value can be assigned to
an empirical object only via its mathematical model. 

While such an understanding of  “structuralism” may appear too narrow – for
insistence on a more “technical” explication of the notions of “structure” and
“isomorphism” – it is in fact very inclusive, even more so than Wellman's network
“structural analysis” (see 1.4.8), as it provides for considering non-relational
structures and encompasses structural paradigms that differ with interpretations of
“structure” as “constraint on a process” or “pattern produced by a process.” The latter
distinction (see 1.4.10) cannot be expressed in the language of Bourbaki's “general
theory of structures” (outlined in see Section 1.5 with introductory presentation of
few key “species of structure”). We can't expect from mathematics to provide us with
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precise reformulations of all issues that have been raised within structuralist
metatheorizing in the social sciences. Nevertheless, a seemingly philosophical
problem of how the concepts of  “structure” and “form” are related  to each other  can
be solved with the use of relatively simple mathematical tools. The  solution  (see
1.5.9) I proposed in my 1992 paper helps remove some uncertainty about the meaning
of these concepts we find in informal discourse of  old  “formal sociology” (Simmel,
Nadel) as well as in quite formal statements of  mathematical sociologists (Fararo).

Many sociologists too little know, misunderstand or dismiss mathematically-
inspired structuralism as allegedly unsuitable for the social sciences. There are
exceptions, however,  as can be seen from the following quotation from William
Goode's contribution (Goode 1975: 74) to the Approaches to the Study of Social
Structure (Blau 1975 Ed.). 

“Some pieces of physical, biological and social reality, I believe, do approximate more

closely to genuine structures in the strict sense that the arrangement of the parts

controls much of the variance in the phenomena. Wittgenstein said in this connection

that we should pay attention to the network, the geometry of its arrangement, and not

to the characteristics of the things the net describes; if a field has so progressed that it

can create such an intellectual structure, perhaps that advice is wise. However, it is not

true that an examination of all social relations, all biological phenomena, or all cultural

patterns will easily disclose an underlying structure in which the arrangement of the

structure is the most central set of variables to be considered.”

Structural variables  – those that refer to the “geometry” of the “arrangement of the
parts” –  play in this paradigm the role of independent variables that are believed to
“control much of the variance” of nonstructural dependent variables. Goode remarks
that an attempt to  explain in this way  “the variance in the phenomena” does not
always need to be successful, but “a moment's thought will inform us that there are
some areas of social behavior which might be good candidates for this kind of
analysis” (1975: 74). The first example he recalled to support his claim was the use
of structural properties of communication networks to account for differences in
efficiency between task groups. This example has already been analyzed in this
chapter (see 1.4.10). 

1.6.3. Inventing general structural sociological paradigms has always been a
favorite business of “grand theorists,” but their books offer at best  “structural
insights.” To make sure that structural approach is a workable paradigm in the social
sciences, you should rather analyze seminal research papers. The structural paradigm
that underlies Bavelas' theory and research defines the class of empirical objects to
be studied as task groups – a kind of social interaction system endowed with a fixed
communication network. The latter is interpreted as constraint on actions of group
members and mathematically modeled by a connected undirected graph. In
experimental research,  physical channels (slots in the dividers separating cubicles for
the actors) were used to construct a communication network in the laboratory setting.
The same structure-constraint could have been enforced by instructing experimental
subjects on who is and who is not permitted to communicate with whom, that is, by
enforcing a social norm vulnerable to violation but assumed to be respected. The
mathematical representation of the communication network is an integral part of the
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paradigm, while the nature of network ties is a secondary factor. As regards the
network nodes (points of the graph), they represent positions  in the social interaction
system or actors that occupy them. To predict  the actors'  behavior as well as  the
behavior of the system as a whole – under  various forms of structure-constraint – one
must make certain assumptions on the actors' motivation (see 1.3.12 and 1.4.10). In
task groups, the subjects are told by the experimenter to be oriented toward the
achievement of the group goal, same for all groups. Once the groups do not differ in
motivation, all independent variables in this paradigm are structural. The dependent
variables, which are all nonstructural,  are measures of group performance (the
amount of time a group needs to complete the task) and satisfaction (the average of
ratings made by group members).

The heuristic function of  any  structural paradigm of the kind – let us call it  inter-
system structural analysis –  consists in  pointing to structural variables as those
among which might be the variables responsible for the differences between empirical
objects with respect to definite dependent variables. The purpose of any specific
structural theory falling under such a paradigm is to pick a concrete structural
variable as explanans for the given nonstructural explanandum. In Bavelas' theory, it
was a structural variable measuring centralization of the communication network that
was suspected to have a strong effect on the level of group performance. To test this
hypothesis, 4 out of 21 nonisomorphic connected 5-node undirected graphs were
selected for the experiment. As Flament (1963: 50–52) noticed, Bavelas'  graphs (3
trees and the 5-node cycle)  also differed with the number of automorphisms, a global
structural variable being another theoretically plausible explanans under the same
paradigm.

The structural paradigm for the study  of network exchange systems  – social
action systems in which actors negotiate with each other and conclude bilateral
transactions –  shares some features with the paradigm that guided the first research
on task groups working under network constraint.  While all members of a task group
cooperate in pairs with the aim to contribute to the collective success, all actors in a
network exchange system pursue their individual goals defined for each of them as
earning as much as possible for himself. The two types of social systems differ
therefore with the nature of actors' co-action and  motivation. However, in both cases
the range a dyads that are permitted to interact is determined by the same structure-
constraint,  a communication network modeled by an undirected graph.

1.6.4. The mathematical model of an exchange network contains an additional
structure-constraint that forces a kind of interdependence of dyadic subsystems. The
structure in question – later it will be called “exchange regime” –  already appears in
the example I have shown  earlier in this chapter  (see 1.2.6) to introduce the reader
to the main topic of the next chapter: the general paradigm for the study of network
exchange systems. I invoke again this example to illustrate how local structural
variables (see 1.5.12)  can be used to predict the values a given nonstructural variable
for the same elements (the  parts of a fixed system). Many structural network
exchange theories – they will be analyzed in Part II – can be subsumed under this
paradigm – intra-system structural analysis – which is a way to formalize the
common sociological custom of explaining variance in income, attitudes, voting
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behavior, etc. by different “places” individuals occupy in a hierarchical organization
or in any social system in which the actors' “positions” are comparable in terms of
“structural similarity.”

The paradigms in which local or global structural variables are used as
independent variables are not the only structural paradigms.  Structural variables may
also play the role of dependent variables, for instance, in paradigms that relate some
structural properties of a social system to some nonstructural properties of its human
substratum,  say, homogeneity/heterogeneity of the set of group members.

Still other structural paradigms contain structural variables only. The simplest
“purely structural” paradigm may have just one structural variable assigning values
to certain configurations (in the special meaning given to this term in 1.5.9). On
assuming that all configurations are equally likely, one can compute the probabilities
for all values of a given structural variable. These probabilities can be compared with
relative frequencies determined from a set of configurations representing a sample of
empirical objects. If the empirical distribution significantly departs from the random
distribution, we say that a structural bias takes place. To give a simple example,

1 2assume that every member of a group made up of n  boys and n  girls is asked to
name exactly one co-member of the opposite sex he or she likes most. The

1 2configurations so obtained are special directed graphs; their number equals n n .n2 n1

Consider the variable V which assigns to any configuration the number of pairs with

ij 1 2mutual choice. V is the sum 0-1 variables of the form V , i=1,ÿ,n , j=1,ÿ,n , where

ijV  takes the value of 1 for every digraph in which ith boy chooses jth girl and
conversely (these variables, unlike their sum, are not structural).  Since the probability

1 2of a mutual choice for each pair equals  n n ,  the expected valued of the random-1 -1

ij 1 2variable V=EV  is equal to 1 (it is the sum of expected values of  n n   0-1 variables).
Hence, to ascertain whether interpersonal preferences in mixed-sex groups reveal a
tendency toward reciprocity, one must compute the mean value of V from a sample
of groups and verify if it significantly exceeds 1.

1.6.5. If the configurations having definite structural forms are observed with a
much greater frequency than that predicted  on the basis of a simple combinatorial
analysis, you can try to explain this regularity by means of a deterministic or
probabilistic mechanism working in a given empirical domain. A predominance of
certain structural forms in a sample of empirical objects may also be interpreted as a
result of stepwise transforming the initial structure until it attains its final shape
marked by a structural bias.

The construction of a dynamical model for an empirical object begins from
distinguishing its unvarying base and varying states. A state is usually identified with
the sequence of current values of certain quantitative or qualitative variables (see also
1.4.6). If you ask an economist the current state of the Irish economy, she will
probably let you know the values main economic indicators assumed by the end of the
last year or month. A sociologist would answer a similar question concerning the state
of  the Polish society with a “discursive nonmathematical” narrative, as his discipline
still suffers from the lack of standard parameters, especially those suitable for
macrosocial objects. Old masters of “social theory” did little in this matter apart from
Durkheim's idea to use the suicide rate as a social indicator. In microsociological
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studies, the unvarying base of a small group is the set of its members, while the states
are all binary relations in it,  including the empty relation, which is the initial state of
a group formed from the individuals who have not known one another before their
first meeting. In Newcomb's (1961) research on the “acquaintance process,” the
successive relations were determined by having the group members to answer
sociometric questions every week. This example  is mentioned here to show that a
formally defined structure (in particular, a relation) may be interpreted not only as
constraint or pattern but as a variable state – against the mental habit of  seeing in any
structure something firm and constant.  

As regards the most mysterious object of human reflection, the concept of time,
mathematics has offered to the empirical sciences two formal representations to be
used in dynamical modeling. Under the continuous time model,  when we say that a
dynamical system –  an object able to change its state – is at time t in a state x,  we
mean by  t a real number – an element of the set  ú (see 1.5.5). Consequently,  a
process is represented as a mapping t6x(t) with t varying over an interval and x(t)
standing  for the system's state at t.

The discrete time model replaces ú with the set of natural numbers ù. A process

0 1is then defined as an infinite sequence of states  x , x ,…. The sequence beginning

0 n n+1 nfrom the initial state x   may reach a final state, or a state  x  such that  x =x ,

n+2 n nx =x ,  and so on (the system, having attained the state  x , will stay in it forever).
In a cyclical process, a fixed finite sequence of states returns infinitely many times
(e.g. sunrise-sunset-sunrise...). That's all what can be said at this level of generality.
If  the system's state space X is endowed with a Hausdorff topological structure (see
1.5.4), then still another regular pattern is possible for an infinite sequence of states

i(x ), namely, the sequence may be convergent  to a limit x*. The system may never
attain the state x*, but its current state is getting closer to  x* with each successive
step of the process.

 The objective of specific mathematical theories concerning the behavior of a
dynamical system with a state space X  is not to foretell the actual sequence of events,
as it will unfold in real time before the eyes of an observer, but rather to determine all
potential processes starting from all possible initial states. A simple deterministic
theory, which uses the discrete time model and satisfies the above requirement,
assumes that the transition from the current state to the next state comes about
according to the same functional law independently of the stage and initial state of a
process. Formally, if the system is in a state x in a moment k, then it will be in the
state F(x) in the moment k+1, where F is a transformation of X into X. As a

0 k 0consequence, the process which begins from a state  x  has the form: x =F (x ), fork

0 0 0 0k=0,1,... where F (x )=x  and F (x )= F(F (x )), so that the initial state determines0 k k-1

uniquely all subsequent states.
Assume now that X is a Hausdorff space and F is a continuous mapping, which

means, by definition, that for any x0X and for any neighborhood of F(x) (in a metric
space, it can be an open ball B(F(x),g) with g>0), there exists a neighborhood of x
(B(x,*) with some *>0) such that F transforms its points into points in the
neighborhood of F(x) (if  D(x',x)<*, then D(F(x'),F(x))<g, where D is the distance in

0X). Any point x* in X is called an equilibrium state if there exists an initial state x

k 0 ksuch that x* is the limit of the process x =F (x ). If a sequence (y ) of elements of X,k
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kconverges to y*, then the sequence (F(y )) converges to F(y*). On applying this

kproperty of any continuous mapping to the sequence (x ),  we arrive at the formula
F(x*)=x*, which means that equilibrium states coincide with fixed points of F. If a
state of equilibrium is attained or taken as the initial state, then a change of state can
be brought about only by an external intervention. When this happens to the system,
it  is interesting  to know whether it will move toward the previous state by virtue of
its internal dynamics. Hence the following definition of stability (see also the first
appearance of this concept in 1.2.4): an equilibrium state is stable if for any point x
in some neighborhood of x*, the sequence (F (x)) converges to x*.k

Theorems on the existence of  fixed points for various transformations help solve
many specific problems in various branches of pure and applied mathematics. In
Chapter 4  of this book (see also Sozański 1997), the Brouwer fixed point theorem
will be used to prove the existence of an equilibrium state in a special dynamical
system which is  to formally represent how the actors, negotiating in a network
exchange system,  modify their current offers.

An introduction to the theory of dynamical systems has been the last of several of
strictly mathematical themes intermixed in this long chapter with a good deal of
general methodology and reflections on the foundations of social science, social
mathematics, mathematical sociology, and structuralism. Trying to open for the
sociologists a  window on the world of mathematics, I could not avoid  technical
discourse in some places (e.g., 1.5.10), which could baffle those readers who are used
to see in symbolic notation an obstacle rather than an aid in understanding key ideas.
I selected for presentation those fragments of the “mathematical edifice” which in my
opinion are most important from a metatheoretical vantage point or will appear later
in this book. Chapter 2 will also be dominated by mathematical stuff, mostly graph
theory, where lie the conceptual and theoretical foundations of the mathematics of
exchange networks.
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