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One-shot Prisoner's Dilemma (PD)
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c = cooperate d = defect   

T – Temptation payoff S – Sucker's payoff

R – Reward payoff P – Punishment payoff

Assumptions on payoffs defining the PD game

T>R>P>S,    R>2(T+S)

PD game with payoffs used in Axelrod's tournament
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d –- strongly dominating strategy (T>R, P>S)

(d,d) – the only pair of strategies in Nash equilibrium
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 PD repeated twice

Strategies

xy = Play x in the 1st round; play y in the 2nd round (x=c or d; y=c or d)
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dd – dominating strategy

A representation in which  the other party's action in the first round

is taken into account in the second round

           x/yz  = play x in the 1st round (x=c or x=d) ; play y in the 2nd round if the other

party played c in the 1st round; play z if the other party played d in the

1st round

1 4a : c/cc  –  always cooperate a : d/dd  – always defect

2 6a : c/cd  –  tit for tat a : d/cd  – suspicious tit for tat

Payoffs gained from best replies to one's partner' actions are printed in boldface (it is

assumed that T+S>2P, that is,  point (P,P) lies below the straight line passing through points

(S,T) and (T,S).

Every pair of dynamical strategies generates a history of the game played twice. Different

strategy pairs may generate the same history.
 

8 8If  T+S>2P, then (a ,b ) is the only strategy pair in Nash equilibrium

8 6 6 8If T+S#2P,   then (a ,b ) and (a ,b ) are in Nash equilibrium as well.
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All equilibrium pairs generate the same history  (both actors defect twice)

2

1
b1:c/cc b2:c/cd b3:c/dc b4:c/dd b5:d/cc b6:d/cd b7:d/dc b8:d/dd
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Conclusion: if the PD game is repeated a fixed finite number of times, rational players  cannot

optimize their choices in round t by  taking into account what happened in rounds 1,…,t!1.

Repeating a game with a constant probability

that a round will be followed by another round

tZ    –   a zero-one random variable 

tZ   =  1 / 0  –  the game will/will not be played at time t, t=1.,2,…

t+1 tP{Z  = 1 / Z =0} = 0 – if the game has not been played at time t, it will not be

played at time t+1, either.

t+1 tP{Z  = 1 / Z =1} = * – if the game has been played at time t, it will be played at

time t+1 with probability *, 0<*<1

1P{Z  = 1} = 1 – the game will be played at least once
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t t t!1 t t!1P{Z  = 1} = P{Z  =1, Z  = 0} + P{Z  =1, Z  = 1} =

t t!1 t!1 t t!1 t!1P{Z  =1/ Z  = 0}@P{Z =0} + P{Z  =1/ Z  = 1}@P{Z =1} =

t!1 t!1 t!1 t!20@P{Z =0} +*@ P{Z =1} = *@ P{Z =1} = *@*@ P{Z =1} = þ

1* @P{Z  = 1} =*  t!1 t!1

T –  the random variable whose value gives the number of times the game is played

t t+1 t t+1 tP{T = t} = P {Z =1, Z =0} = P{ Z =1}@P{Z =0/Z =1}=*  (1!*)t!1

  

The probability that the  game ends after a finite number of steps equals 1. E(T) is the

expected duration of the game.

* = .5 E(T) = 2

* = .9 E(T) = 10

* = .99 E(T) = 100

* = .995 E(T) = 200

 

Histories and dynamical strategies

1 mA = {a ,…,a } – pure strategies of player 1

1 nB = {b ,…,b } –  pure strategies of player 2

Mixed strategies (probability distributions)
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t H  – the set of all possible histories up to time t,  t = 1,2,…

i1 j1 it jth = (a ,b ),…,(a ,b ) – history as a sequence of co-actions 

i1 it j1 jth = (a ,…,a ), (b ,…,b ) – history as two parallel action sequences

i1 ita ,…,a

j1 jtb ,…,b

o = H {i} – empty history (preceding the first move)

 – the set of all histories of the game

 – a dynamical strategy of player 1

 – a dynamical strategy of player 2

1s (i)  – strategy used in the 1st round by player 1

t 1For  any h0H , t$1,  s (h) is the strategy used by player 1 in round t+1

1 2If  player 1 uses dynamical strategy s  and player 2 uses dynamical strategy s , then the

payoff of player 1 is defined by the formula  

 where  

 is the mean  total payoff of player 1 if the game is repeated t times

The total payoff u(h) earned by player 1 as a result of history h in which player 1 used

i1 it j1 jtstrategies (a ,…,a ) while player 2 used strategies (b ,…,b )  is given by the formula

 

i1 j1 it jt  if  h = (a ,b ),…,(a ,b )

1 2P{h} –  probability of a history h  under dynamical strategies s  and s

1 i1 j1 i1 j1 1 2h0H , h =(a ,b ), P{h}=p q , where p = s (i) and  q = s (i) are mixed strategies used

by the players in the first round

th0H ,  t>1

it jt t!1 it jt 1 2h = h'(a ,b ), h'0H , P{h}=P{h'}p q ,  where p = s (h') and  q = s (h') are mixed strategies
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used by the players in round  t  (dependent on the history h' of the game  in rounds 1 through

t!1.

1 1 ts   is a deterministic strategy if  s (h) is a pure strategy for any h0H*, that is, if h0H ,

1 2Any two deterministic strategies s  and s  determine an infinite history

Game played infinitely many times with a discount parameter

 

1 2If s  and s  are two deterministic strategies, then

which allows for an alternative interpretation of * as a discount parameter

– payoff in the 1st round

– payoff in the 2nd round

– payoff in the kth round

The game is (in theory) always played infinitely many times,  but the payoff shrinks from

round to round by a constant factor and  converges to 0 as t  goes to infinity.

Symmetric games

1 m 1 mLet A = {a ,…,a } and B = {b ,…,b } denote strategy sets of player 1 and player 2.  The

i j i jgame with payoff functions u (player 1) and v (player 2) is called symmetric if u(a ,b )=v(b ,a ),

ij jifor i,j=1,…m  (u =v  in matrix notation). 

Example: PD 

1 1 2 2a  = b  = c, a  = b  = d

11 11 22 22u = v  = R,   u  = v  = P

12 21 21 12u   = v  = S,  u  = v  = T
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Dynamical strategies in Iterated PD 

Deterministic strategies: examples

ALL D  –   always defect ALL C  –  always cooperate

s(h) = d s(h) = c

TFT –  Tit for Tat

s(i) = c 

1 1 t t th = (i ,j ),…,(i ,j )0H , t>0

1 t 2 ts (h) = j  (player 1),  s (h) = i  (player 2)

In each round, play the strategy your partner played in the previous round

STFT – Suspicious Tit for Tat

Defect in round 1, play TFT from  round 2 onwards

TF2T – Tit for 2 Tats

Defect in round t only if your partner defected in rounds  t!2 and t!1

PR   –  Permanent Retaliation (Never Forgive)

Cooperate until your partner defects. If he defects for the first time in round t, defect

from round t+1 onwards

 ALT – Alternate defection with cooperation (dcdc....)

Probabilistic strategies: examples

 

RND ALL B: Cooperate in every round with constant probability B

RND 1 B/TFT: Play  c with probability B in round 1, play TFT since round 2 on.  

Probabilistic strategies should not be confused with finitely mixed dynamical strategies of the

1 1 k k i 1 k 1 kform " : s , …," : s  where  " $0, " +þ+" =1, and s ,…,s  are dynamical strategies. Some

probabilistic strategies can be represented as  mixed strategies with deterministic

components, e.g. RND 1 B/TFT works equivalently as  B: TFT, 1!B: STFT.
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Computing payoffs in the IPD 

Collective stability

Let s be a dynamical strategy of player 1. The respective strategy of player 2 will be noted

with the same symbol s by virtue of the symmetry of the infinitely iterated game resulting from

the symmetry of the underlying one-shot game.

A dynamical strategy  s of player 1  is said to be collectively stable if  u(s,s)$u(s',s) for any

dynamical strategy s' of player 2, that is,  s  is the best response of player 1 to the same

strategy s  used by player 2. Then v(s,s)=u(s,s)$u(s',s)=v(s,s'), so that s is the best response

of player 2 to s used by player 1. Thus, s is collectively stable iff (s,s) is in Nash equilibrium

in the game with infinitely many strategies.

      

A dominating dynamical strategy s* of player 1 is defined by the condition: for any dynamical

strategy t of player 2. u(s*,t)$u(s,t) for any dynamical strategy s of player 1, that is, s* is the

best response to any strategy of the other player.  In an infinitely iterated PD, there is no s*

with this property if * is sufficiently high.  Indeed, for t=ALL D, we have 

that is, ALL D is better than ALL C against ALL D. However, ALL C is better than ALL D

against t=TFT.

  if   

Theorem 1: ALL D is collectively stable, i.e., u(ALL D, ALL D)$u(s, ALL D) for any s 
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Proof

 

Theorem 2: TFT is collectively stable iff 

Proof of Theorem 2:

Necessity

(1)  The inequality  is equivalent to  , which means

that TFT is a better reply to TFT than ALL D.

(2) The inequality  is equivalent to  

 (we omit the computation of u(ALT,TFT)).

(3) The collective stability of TFT implies that  and  

. Hence  and   by (1) and (2) and the proof of

necessity is completed.

Sufficiency

(4) Assume that  . We show that there is no deterministic strategy s  such

1that u(s,TFT)>u(TFT, TFT). Suppose that there exists such an s. We construct a strategy s

1such that u(s ,TFT)$u(s,TFT) and player 1 chooses c in round 1.

i1 i2 i1Let  a ,a ,.... be  the infinite sequence of actions of player 1 using s against TFT. If a =c,

1 i1 1then s =s. If a =d then s  is obtained from s by changing from d to c in  round 1, and

modifying the prescription on what player 1 should to in rounds t=2,3,... so that the history

1generated by s  and TFT coincide with the history generated by s and TFT from round 3 on.

i2 Assume that a =d. Then player 1 using s plays dd in round 1 and 2, while his partner

1using TFT plays cd, which implies that  u(s,TFT)=T+*P+þ. If player 1 uses s , then his

1actions are cd, while his partner actions are cc, so that  u(s ,TFT)=R+*T+þ. We have,

1therefore,  u(s ,TFT)!u(s,TFT)=(R+*T)!(T+*P)=*(T!P)!(T!R)$0 since *$(T!R)/(T!P).

i2Assume in turn that a =c. Then, the histories  (1:dc)(2:cd), (1:cc)(2:cc), generated by s and

1 1s  and TFT yield the formulas  u(s,TFT)=T+*S+þ, and u(s ,TFT)=R+*R+þ. We have

1u(s ,TFT)!u(s,TFT)=(R+*R)!(T+*S)=*(R!S)!(T!R)$0.
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1 2Similarly, given s , we construct s  which prompts  player 1 to cooperate in rounds 1 and

1 nit is no worse reply to TFT than s . Repeating the procedure, we obtain a sequence s  of

strategies, each cooperating in rounds 1 through n.

Notice that  where    converges to 0 so that

nlim u(s ,TFT) = R/(1!*) = u(TFT,TFT) and  u(TFT,TFT)>u(TFT,TFT), which is a contradiction.

(5) Once it is known that  u(TFT,TFT)$u(s,TFT) for any deterministic s, it remains to be

shown that TFT does no worse than any s  (how to prove this?)

General dynamical systems with discrete time

Let X  be a set endowed with a distance D and let   be a continuous mapping of

X into X.  (X,F) is called a dynamical system with space of states  X and transformation F. If

x is the system's state in time t (t=0,1,…), then  F(x) is the system's state in time t+1.    

If x  is an initial state (t=0), then  x , x =F(x ), x =F (x )=F(F(x )) are successive states0 0 1 0 2 2 0 0

t=0,1,…(t=1,2,…). The sequence  (x =F (x ))  is called a trajectory going out from x .t t 0 0

A point x* is called an equilibrium if it is a fixed point of F, that is,

 F(x*)=x*.

A point x* is an equilibrium if and only if x*=lim F (x ) for some xt 0 0.

An equilibrium x* is said to be stable if for any point x sufficiently close to x* the trajectory

going out of  x  converges to x*, that is, if the system has  for any reason left the equilibrium

state x*, it will be returning to it provided that it has not moved too far away from x*. Points

which are “sufficiently close” to x* are those lying in a neighborhood U(x*,r) of x* for some r>0

where  U(x*,r)={x0X: D(x*,x)<r} (the set of  points whose distance from x* is smaller than r ).

Symmetric games played by a population of players

1 mConsider a symmetric game with a finite set of strategies {s ,…,s } and payoffs of the player

ij1 given by the matrix  (u ) with nonnegative entries.

Let  denote  the set of m-dimensional probability

idistributions. For any vector x in X, we interpret its ith coordinate  x   as the relative frequency

iof players who use strategy s  in all games they play at a given period t with other members

of a closed population. A measure of  ith strategy's fitness in state x is defined as  the mean

i payoff of a player who uses strategy s  in games played with other members of the

population, symbolically. 
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1For example, if all players use strategy s , then the current system state is given as the

i i1probability vector (1,0,…,0). We have then  V (1,0,…0)=u

The average fitness in a population in state x  is defined by the formula

Evolution

To construct a dynamical system with such a space of states X, we need to define a

transformation F of X into X. Assume that an F is defined in such a way that  the following

conditions are satisfied for any x in X:

i I i j If x =0 then F(x) =0. If x >0 and  x >0, then

 or, equivalently, 

i i iwhere )x  = F(x)  !x .

i iEvery F with these properties is called  an evolutionary process. The quantity F(x) /x  shows

the direction (growth or decline) and intensity of change in  ith strategy  frequency between

the current and next stage of the process. Under evolutionary process, the frequency of a

strategy which is currently fitter than another strategy grows relatively faster.

If F is an evolutionary process, then

i i i j i jF(x) =x  for all i  iff V (x)=V (x) for any i,j such that x >0 and x >0,

that is,  x is an equilibrium iff any two strategies which have survived are equally fit. The

i j j isufficiency of this condition results from adding up the two sides of equation F(x) x =F(x) x

over all j

i jAny probability vector z  such that  z =1 and z =0 for any j�i  is automatically an equilibrium.i i i

iIf  z   stable, then strategy s  is said to be evolutionarily stable under F.i

The concept of equilibrium stability has a definite meaning only if we  define a distance in the

space X  of  m-dimensional probability vectors. Let the distance between x and y in X be
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j j jgiven by the formula  D(x,y)=max *x!y *. Then . The

ineighborhood of z   with radius r  consists of all probability vectors x such that  x >1!r.i

iStrategy s   is evolutionarily stable under F if  there is an r>0  such that  lim F (x) = z   for anyt i

i t=0,1,…x such that  x >1!r. The infinite sequence F (x)   converges to  z , by definition, iff fort i

g g iany g>0 there is  a t  such that for every t$t   D(F (x),z )<g, that is,  F (x) >1!g, As at i t

i jconsequence,  lim F (x) = z   iff  lim F (x)  =1 (hence  lim F (x)  = 0  for all   j�i).   t i t t

Proportional fitness rule (PFR)

Let us define F by the following formula known as “proportional fitness rule”

 

       

iIThus, F(x)  $x   iff . Any strategy occurs more frequently in time t+1 (“in the next

generation”) if and only if its fitness in time t is above the current average in the population.

1 2Example: IPD with the strategy set restricted to s =ALL D, s =TFT 

2

1
ALL D TFT

ALL D

TFT

1 2 1 2Let us represent any x=(x ,x ) as  (g,1!g). Since V (x) and V (x) are functionally related to

i ig, we write  V (g) instead of V (g,1!g)
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A state (g,1!g) is an equilibrium if  g=1 (all players play ALL D) or g=0 (all play TFT) or 0<g<1

1 2and V (g)=V (g). The only solution of the latter equation is given by the formula

For a fixed value of *, the state of equilibrium (g,1!g) where  g is given by the above equation

represents balanced co-habitation of ALL D and TFT  in a population.

0 t t!1 0Let g  represent the initial frequency of players using ALL D, and let  g  = F(g )=F (g ) standt

0 tfor the respective frequency at time t. If g =g(*), then the frequency  g   does not change over

time as shown below where T, R, P, S are given  Axelrod values 5, 3, 1, 0 and  *=b,

0g =g(*)= b. 

1 t!1 2 t!1 t!1 t t!1 tt V (g ) V (g ) V(g ) g =F(g ) 1!g

1 4.33 4.33 4.33 0.6667 0.3333

2 4.33 4.33 4.33 0.6667 0.3333

3 4.33 4.33 4.33 0.6667 0.3333

The equilibrium is not stable: a slightest change of g results in a process that converges to

(1,0) or (0,1).  If g>g(*) then ALL D supersedes TFT; if  g<g(*), then TFT wins the contest.

The  processes of approaching these states are shown below.  

ALL D  beats TFT

0 g  = 0.8 > b = * 

1 3.80 3.40 3.72 0.8172 0.1828

   2 3.73 3.28 3.65 0.8357 0.1643

 3 3.66 3.15 3.57 0.8552 0.1448

 4 3.58 3.01 3.50 0.8752 0.1248

5 3.50 2.87 3.42 0.8952 0.1048

6 3.42 2.73 3.35 0.9144 0.0856

7 3.34 2.60 3.28 0.9321 0.0679

8 3.27 2.48 3.22 0.9478 0.0522

9 3.21 2.37 3.16 0.9610 0.0390

 10 3.16 2.27 3.12 0.9716 0.0284
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TFT beats ALL D

0 g  = 0.5 <  b = * 

1 5.00 5.50 5.25 0.4762 0.5238

2 5.10 5.67 5.39 0.4498 0.5502

3 5.20 5.85 5.56 0.4208 0.5792

4 5.32 6.05 5.74 0.3895 0.6105

5 5.44 6.27 5.95 0.3563 0.6437

6 5.57 6.51 6.17 0.3217 0.6783

7 5.71 6.75 6.42 0.2865 0.7135

8 5.85 6.99 6.67 0.2515 0.7485

9 5.99 7.24 6.93 0.2177 0.7823

10 6.13 7.48 7.18 0.1857 0.8143

If  (0.5 for Axelrod payoffs), then g(*)<0 which is impossible. Thus, for such a * only

ALL D is evolutionarily stable. If   so are both ALL D and TFT. Note that for any

0<*<1  and 0#g#1 the trajectory going out of (g,1!g) converges to an equilibrium. 

  

A necessary and sufficient condition for a strategy

to be evolutionarily stable under PFR

1 m 1Suppose m strategies s ,…,s   are available to 100 players, but only s   is actually used  in

2bilateral contests by all of them. What happens if one player switches to strategy s  while 99

1 1players go on playing s ? If s  is evolutionarily stable under PFR, then the deviant (“mutant”)

1will leave the population (“die”) or will play s  back again.
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The problem of characterizing strategies which are  evolutionarily stable under PFR was

dealt with  by Bendor and Œwistak (1992, unpublished paper). According to their theorem

given below every evolutionarily stable strategy is the best reply to itself, but collective

stability alone does not entail evolutionary stability.

1 mTheorem 3. In a population playing a symmetric game with  strategies s ,…,s  and payoff

ij i ii himatrix (u ), a strategy s   is evolutionarily stable under PFR if and only if  for all h�i, u  $ u ,

ii hi ih hhif  u  = u , then u  >u . 

 

Proof of necessity

1To simplify notation, let i=1. If s  is evolutionarily stable under PFR in the game with m

1 hstrategies, then so it is in the game with two strategies: s  and s . Let h=2, again to simplify

11 21 11 21 12 22notation. Assume for an indirect proof that (a) u <u   or  (b) u =u  and u #u . Put

1 21 11 2 22 12 2 1 1 1 2 2d =u !u , d =u !u   and rewrite V (x)!V (x) as x d +x d .

2 1 2 2 2 1Consider case (b) first. Then, for any x, V (x)!V (x)=x d $0, so that V (x)$V (x). Hence, 

2 2 which implies in turn that We conclude that F (x) $x  for any t , so that  limt

2 2 2F (x)  $x  for any x >0, which  contradicts the assumption that (1,0) is a stable equilibrium.t

2 2Indeed, stability implies that lim F (x) =0 if x is sufficiently close to (1,0), that is, if x <r fort

some r>0.     

2 1 2 1 2 2 1 2 1 2 1If  (a) is the case, then V (x)!V (x)=(1!x )d +x d =d !x (d !d ) and d >0. There exists

1 2 1 2 2 2 1an r'>0 such that d !x (d !d )>0 if x <r'. Therefore, V (x)>V (x), 

2 2 2if x <r'. Let us fix an x such that  0<x <r"=Min{r,r'}. Then lim F (x) =0, whicht

2 2means that there is an integer  t'$0 such that F (x) <r' for all t$t'. The sequence  (F (x) ),t t

t=t',t'+1,… whose terms are bounded from above by 1 and increase with t must converge to

2 2a number greater than 0 (because F (x) >F (x) $0), which is a contradiction because thet'+1 t'

2sequence beginning from t' has the same limit 0 as the whole sequence  (F (x) ), t=0,1,…t

Proof of sufficiency (complete only for m=2))

11 h1 11 h1 1h hhTo simplify notation, let i=1. Assume that for any h�1, u $u ; if u =u , then  u >u .

1 h(1) The first step will be to show that  for h=2,…,m,  V (x)>V (x) for any x�z  in some1

h 1 1 11 2 12 m 1mneighborhood U(z ,r ) of z =(1,0,…,0). For h=2, V (x)=x u +x u +þ+x u ,1 1

2 1 21 2 22 m 2m 1 2 1 1 2 2 m m j 1j 2jV (x)=x u +x u +þ+x u ,  so that V (x)!V (x)= x e +x e +þ+x e  where e =u !u ,

11 21 1 11 21 12 22. 1j=1,…,m. We distinguish two cases: (a)  u >u , or e >0; (b) u =u  and u >u , or e =0

2and e >0.

1 1 2 2 m m 1(a) Since the linear function f(x)=x e +x e +þ+x e  is continuous and f(z )=e >0, there1

must exist a neighborhood U of z  such that f(x)>0 for any x0U.1

1 2 2 2 2(b) If m=2, then V (x)!V (x)=x e >0 for any x >0. How to prove this for m>2 ?
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1 h h(2) We conclude that  V (x)>V (x),  h=2,…,m,  x0U=U(z ,r), x�z , where r=Min r . Hence,1 1

1 1 1for any x0U, V (x)>V (x), which implies that F(x) >x . Notice that F(x)0U  for x0U. The terms_

1of the increasing  sequence F (x)  are bounded from above by 1, so the sequence has a limitt

which must be equal to 1.

 

Problems for further study 

How to prove (or possibly disprove) Theorem 3 for symmetric games with more than 2

strategies?  Is the sequence F (x) convergent for any x? (does evolution always lead to ant

equilibrium?) Can other equilibria (those in which two or more strategies have non zero

frequencies) be stable?

Temat  „Gry  w populacjach. Procesy ewolucyjne” w³¹czy³em do programu  mojego kursu „Teoria gier i

decyzji dla socjologów i psychologów”  po raz pierwszy w roku akademickim 2004/05. W  maju 2005

przygotowa³em dla siebie notatkê do wyk³adu (tekst zredagowa³em po angielsku). Za g³ówne Ÿród³o  (poza

klasyczn¹ ksi¹¿k¹ Axelroda The Evolution of Cooperation) pos³u¿y³ mi artyku³  J. Bendora i P. Œwistaka.

“The Evolutionary Stability of Cooperation.” (American Political Science Review 91 (1997): 290–307; t³um.

„Ewolucyjna stabilnoœæ kooperacji”. Studia Socjologiczne 1998 nr 3: 127–171). Czytaj¹c tê pracê, stara³em

siê zrozumieæ sens matematyczny przedstawionych tam wywodów (w tym sens kluczowego pojêcia

„ewolucyjna stabilnoœæ”), a gdy pojawi³y siê trudnoœci, uzna³em, ¿e ³atwiejsze  bêdzie samodzielne

poruszanie siê (tzn. korygowanie niejasnoœci w definicjach i dowodzenie twierdzeñ na w³asn¹ rêkê). St¹d

okreœlenie mojej notatki jako ”Lecture note evolving into a research note”. Utkn¹³em, próbuj¹c  dowieœæ

Twierdzenia 3 dla populacji z wiêksz¹ od 2 liczb¹ strategii (wszak¿e nie mam pewnoœci czy twierdzenie

to jest adekwatn¹ rekonstrukcj¹ oryginalnego twierdzenia Bendora i Œwistaka) i dalsze  badania od³o¿y³em

na póŸniej.   

Powtarzaj¹c kurs w roku akademickim 2005/2006, zdecydowa³em siê udostêpniæ s³uchaczom (i

wszystkim innym zainteresowanym) swoj¹ prywatn¹ notatkê, umieszczaj¹c j¹ na stronie domowej. Mo¿e

ktoœ pomo¿e mi doprowadziæ badania do koñca?

Do notatki do³¹czy³em dwa programy  (pliki  tournmnt.exe i  ipd.exe  spakowane razem z plikiem ipd.pdf

w pliku ipd.zip): napisany w 1998 roku program ilustruj¹cy turniej Axelroda, oraz nowy program  (maj 2005)

pokazuj¹cy przebieg procesu ewolucji (PFR) w populacji, w której dostêpne s¹ trzy strategie w

Powtarzanym Dylemacie W iêŸnia: ALL D, ALL C i TFT (wyp³aty w grze pojedynczej maj¹ wartoœci jak u

Axelroda). U¿ytkownik proszony jest najpierw o podanie wartoœci parametru delta, a nastêpnie

pocz¹tkowego rozk³adu strategii ALL D i ALL C – dwu liczb, których suma nie przekracza 1; czêstoœæ TFT

program oblicza odejmuj¹c tê sumê od 1. 

http://www.cyf-kr.edu.pl/~ussozans/
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