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One-shot Prisoner's Dilemma (PD)
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|
¢ = cooperate d = defect

T — Temptation payoff S — Sucker's payoff
R — Reward payoff P — Punishment payoff

Assumptions on payoffs defining the PD game
T>R>P>S, R>,(T+S)

PD game with payoffs used in Axelrod's tournament

d — strongly dominating strategy (T>R, P>S)
(d,d) — the only pair of strategies in Nash equilibrium



PD repeated twice
Strategies

xy = Play x in the 1st round; play y in the 2nd round (x=c or d; y=c or d)

-
| I cc cd dc dd
cc 2R +T T+R 2T
2R R+S S+R 2S
cd +S +P T+S T+P
R+T R+P S+T S+P
de S+R S+T +R P+T
T+R T+S P+R P+S
dd 2T S+P +S 2P
2T T+P P+T 2P

dd — dominating strategy

A representation in which the other party's action in the first round
is taken into account in the second round

play x in the 1st round (x=c or x=d) ; play y in the 2nd round if the other
party played c in the 1st round; play z if the other party played d in the
1st round

xlyz =

a,: c/cc — always cooperate
a,: c/ed — tit for tat

a,. d/dd — always defect
ag: dlicd — suspicious tit for tat

Payoffs gained from best replies to one's partner' actions are printed in boldface (it is
assumed that T+S>2P, that is, point (P,P) lies below the straight line passing through points
(S,T)and (T,S).

Every pair of dynamical strategies generates a history of the game played twice. Different
strategy pairs may generate the same history.

If T+S>2P, then (ag,bg) is the only strategy pair in Nash equilibrium

If T+S<2P, then (ag,bgs) and (ag,bg) are in Nash equilibrium as well.



All equilibrium pairs generate the same history (both actors defect twice)

2
1 bi:clcc | b2icicd | b3:cidc | bd:c/dd | b5:dicc | bé:dicd | b7:d/dc | b8:d/dd
i) 2R 2R R+T R+T T+R T+R 2T 2T
ateree 1 or 2R R+S R+S S+R S+R 28 28
2led 2R 2R R+T R+T T+S T+S T+P T+P
as:eied il Hr 2R R+S R+S S+T S+T S+P S+P
s R+S R+S R+P R+P T+R T+R 2T 2T
asielde I pat R+T R+P R+P S+R S+R 28 28
4-c/dd R+S R+S R+P R+P T+S T+S T+P T+P
as:e R+T R+T R+P R+P S+T S+T S+P S+P
5-q/ S+R S+T S+R S+T P+R P+T P+R P+T
avaiee I 14R T+8 T+R T+8 P+R P+S P+R P+S
5-d/od S+R S+T S+R S+T P+S 2P P+S 2P
avdiedl T4R T+8 T+R T+S P+T 2P P+T 2p
_ 28 S+P 28 S+P P+R P+T P+R P+T
ardiae | ot T+P 2T T+P P+R P+S P+R P+S
28 S+P 28 S+P P+S 2P P+S 2P
a8:d/dd
2T T+P 2T T+P P+T 2P P+T 2P

Conclusion: if the PD game is repeated a fixed finite number of times, rational players cannot
optimize their choices in round t by taking into account what happened in rounds 1,...,{-1.

Z -

Repeating a game with a constant probability
that a round will be followed by another round

a zero-one random variable

Z, = 1/0 — the game will/will not be played at time ¢, t=1.,2,...

P{Z,,,

=1/Z=0y=0 -

P{Z,,=1/Z=1}=0 -

P{Z, =1} =1

if the game has not been played at time £, it will not be
played at time t+1, either.

if the game has been played at time ¢, it will be played at

time t+1 with probability 8, 0<d<1

the game will be played at least once




P{Zt =1} = P{Zt =1, Zt,1 =0} + P{Zt =1, Zt,'] =1} =
P{Zt =1/ th‘l = O}-P{ZH:O} + P{Zt =1/ Zt,1 = 1}.P{Zt,1=1} —
O-P{Zt71=0} +0- P{Zt71=1} =0 P{Zt71=1} =55 P{Zt72=1} -

5t 1-P{Z, = 1} =5t

T — the random variable whose value gives the number of times the game is played

P{T =t} =P {Z=1, Z,,,=0} = P{ Z=1}P{Z,,,=0/Z=1}=5!" (1-5)

O

1-
1-

=1

Y P(T=} = Y. (1-8)8"" = (1-8)Y &' =
t=1 t=1 =0

O

oo

BT = Y aP(T=} = Y 10-8)5 = A-8)%8Y = (-85 -1
t=1 =1 1 —
1-5 _ 1

) (1-8? 1-3

The probability that the game ends after a finite number of steps equals 1. E(T) is the
expected duration of the game.

5=.5 E(T) =2
5=.9 E(T) =10
5=.99 E(T) = 100
5 = .995 E(T) = 200

Histories and dynamical strategies

A={a,,...,a_ }— pure strategies of player 1

B={b,,...,b,} — pure strategies of player 2

Mixed strategies (probability distributions)

P, = {p=(py--0,): 1,202 p,=1} 0, = {g=(qp>--4,): 4,20.)_q;=1}
i1 i1
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H, — the set of all possible histories up to time t, t=1,2,...

h = (a, ,bj1),...,(a,t,bjt) — history as a sequence of co-actions
h=(a,....a;), (bj1,...,bjt) - history as two parallel action sequences
8, ryg

b b

i Djg
H, _ {2} — empty history (preceding the first move)

H* = UH, — the set of all histories of the game
t=0

s;: H*~ P_ —adynamical strategy of player 1
s,: H*~ Q —adynamical strategy of player 2

S,(e) — strategy used in the 1st round by player 1
For any heH,, t-1, s,(h) is the strategy used by player 1 in round t+1

If player 1 uses dynamical strategy s, and player 2 uses dynamical strategy s,, then the
payoff of player 1 is defined by the formula

u(s;,s,) = 3 P{T=t}u,(s;,s,) = 3 (1-8)8'u,(s,,s,) where u(s,,s,) = ;,E P{h}u(h)
t=1 t=1 eH,
is the mean total payoff of player 1 if the game is repeated t times

The total payoff u(h) earned by player 1 as a result of history h in which player 1 used
strategies (a;,...,a;) While player 2 used strategies (bj1 ,...,bjt) is given by the formula

t
uh) = Y u,, it h=(8.65)....(apby)
g=1 #%

P{h} — probability of a history h under dynamical strategies s, and s,

heH,, h =(ai1,bj1), P{h}=p;, ¢ where p = s,(2) and q = s,(o) are mixed strategies used
by the players in the first round

heH,, t>1
h="h'(a;.b;), h'eH, 4, P{h}=P{h'}pitqjt, where p = s,(h") and q = s,(h') are mixed strategies

it'Mjt
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used by the players in round t (dependent on the history h' of the game in rounds 1 through
t-1.

S, is a deterministic strategy if s,(h) is a pure strategy for any heH*, that is, if heH,
s;(h) = q,

b

Any two deterministic strategies s, and s, determine an infinite history

a. a.r-
h o

3 bfzm

Game played infinitely many times with a discount parameter

If s, and s, are two deterministic strategies, then

IS t IS 0
u(s,,s,) = E 8711 —p)E u . = E u (1 -8)) 8! = E u, 6" E &k =
L= & W 6 &

Eu akzaf—fj 1—‘56'fi=fjék-1uik,k

We § pary i o} 1-0 %3

which allows for an alternative interpretation of d as a discount parameter

. - payoff in the 1st round
6”1-21-2 — payoff in the 2nd round
6k‘1uik,.k — payoff in the kth round

The game is (in theory) always played infinitely many times, but the payoff shrinks from
round to round by a constant factor and converges to 0 as t goes to infinity.

Symmetric games

Let A={a,,....a}and B = {b,,...,b,} denote strategy sets of player 1 and player 2. The
game with payoff functions u (player 1) and v (player 2) is called symmetric if u(ai,bj)=v(bi,aj),
for ij=1,...m (u;=v; in matrix notation).
ij i
Example: PD
a,=b,=c,a,=b,=d

Upg = Ve =R, Uy =V, =P
Ujp S Vpq =S, Uy =V =T
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Dynamical strategies in Iterated PD

Deterministic strategies: examples
ALL D — always defect ALL C — always cooperate

s(th)y=d s(th)y=c¢

TFT — Tit for Tat
s(e)=c
h = (i, jy),-. . (if)eH, t>0
s,(h) = j; (player 1), s,(h) = i, (player 2)
In each round, play the strategy your partner played in the previous round
STFT — Suspicious Tit for Tat
Defect in round 1, play TFT from round 2 onwards
TF2T — Tit for 2 Tats
Defect in round t only if your partner defected in rounds t-2 and t-1
PR — Permanent Retaliation (Never Forgive)

Cooperate until your partner defects. If he defects for the first time in round ¢, defect
from round t+1 onwards

ALT — Alternate defection with cooperation (dcdc....)

Probabilistic strategies: examples

RND ALL r: Cooperate in every round with constant probability
RND 1 n/TFT: Play c with probability min round 1, play TFT since round 2 on.

Probabilistic strategies should not be confused with finitely mixed dynamical strategies of the
form xSy, ...,0, 0 S, where o,>0, o, +--+a,=1,ands,,...,s, are dynamical strategies. Some
probabilistic strategies can be represented as mixed strategies with deterministic
components, e.g. RND 1 1i/TFT works equivalently as m: TFT, 1-m: STFT.
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Computing payoffs in the IPD

u(LLD, ALLD) = ¥ &P = P} 51 = £
=1 =1 1-6
u(TFT, ALLD) = S+Y_,8"'P = S+P8Y &2 =8 + % p
t=2 =2 1-6
wALLD, TFT) = T+Y 8P = T +-2_p
=2 1-6
w(TFT, TFT) = ¥ "R - %
1=1 -

Collective stability

Let s be a dynamical strategy of player 1. The respective strategy of player 2 will be noted
with the same symbol s by virtue of the symmetry of the infinitely iterated game resulting from
the symmetry of the underlying one-shot game.

A dynamical strategy s of player 1 is said to be collectively stable if u(s,s)>u(s',s) for any
dynamical strategy s' of player 2, that is, s is the best response of player 1 to the same
strategy s used by player 2. Then v(s,s)=u(s,s)>u(s',s)=v(s,s'), so that s is the best response
of player 2 to s used by player 1. Thus, s is collectively stable iff (s,s) is in Nash equilibrium
in the game with infinitely many strategies.

A dominating dynamical strategy s* of player 1 is defined by the condition: for any dynamical
strategy t of player 2. u(s*t)>u(s,t) for any dynamical strategy s of player 1, that is, s* is the
best response to any strategy of the other player. In an infinitely iterated PD, there is no s*
with this property if 8 is sufficiently high. Indeed, for t=ALL D, we have

u(ALLD, ALLD) = > 1_56 - w(ALLC, ALLD)

i
1-6
that is, ALL D is better than ALL C against ALL D. However, ALL C is better than ALL D
against t=TFT.

w(ALLC, TFT) = 1_Rs > T+

Dﬂ

. -R
P = u(ALLD, TFT) if & >
T~ D -

~

Theorem 1: ALL D is collectively stable, i.e., u(ALL D, ALL D)>u(s, ALL D) for any s



Proof

u(s, ALLD) = i(l—&)&"lz P{htu(h) < i(l—&)&"lz P{h}tP = u(ALLD, ALLD)

t=1 heH, t=1 heH,

—RT

N

Theorem 2: TFT is collectively stable iff > .

"U
V.I

Proof of Theorem 2:

Necessity

(1) The inequality & > - ﬁ is equivalentto u(TFT, TFT) > u(ALLD, TFT), which means

that TFT is a better reply to TFT than ALL D.

T+56S
62

(2) The inequality 62% is equivalent to u(TFT,TFT) > u(ALT,TFT) =

(we omit the computation of u(ALT,TFT)).

(3) The collective stability of TFT implies that u(TFT,TFT) > u(ALLD,TFT) and

u(TFT,TFT) > u(ALT,TFT). Hence 6> T—ﬁ and 62% by (1) and (2) and the proof of

necessity is completed.

Sufficiency

'ﬂ

—RTR

(4) Assume that 6> —— . We show that there is no deterministic strategy s such

T-

that u(s, TFT)>u(TFT, TFT). Suppose that there exists such an s. We construct a strategy s,
such that u(s,, TFT)>u(s,TFT) and player 1 chooses ¢ in round 1.

Let a,,a,.,.... be the infinite sequence of actions of player 1 using s against TFT. If a,,=c,
then s,=s. If a,,=d then s, is obtained from s by changing from d to ¢ in round 1, and
modifying the prescription on what player 1 should to in rounds t=2,3,... so that the history
generated by s, and TFT coincide with the history generated by s and TFT from round 3 on.

Assume that a,,=d. Then player 1 using s plays dd in round 1 and 2, while his partner
using TFT plays cd, which implies that u(s, TFT)=T+3P+-.. If player 1 uses s, then his
actions are cd, while his partner actions are cc, so that u(s,,TFT)=R+0T+-. We have,
therefore, u(s,,TFT)-u(s, TFT)=(R+0T)-(T+dP)=0(T-P)-(T-R)=0 since &>(T-R)/(T-P).

Assume inturnthat a,=c. Then, the histories (1:dc)(2:cd), (1:cc)(2:cc), generated by sand
s, and TFT yield the formulas u(s,TFT)=T+0S+-, and u(s,,TFT)=R+0R+--. We have
u(s,,TFT)-u(s, TFT)=(R+3R)-(T+3S)=0(R- S)-(T-R)=0.

V"U
C/J



Similarly, given s,, we construct s, which prompts player 1 to cooperate in rounds 1 and
it is no worse reply to TFT than s,. Repeating the procedure, we obtain a sequence s, of
strategies, each cooperating in rounds 1 through n.

Notice that u(s,,TFT) = (), 8*'R) + x, where x, < Y. 8 !T converges to 0 so that
k=1 k=n+1

limu(s,, TFT)=R/(1-3)=u(TFT,TFT)and u(TFT,TFT)>u(TFT,TFT), which is a contradiction.

(5) Once it is known that u(TFT,TFT)>u(s,TFT) for any deterministic s, it remains to be
shown that TFT does no worse than any s (how to prove this?)

General dynamical systems with discrete time

Let X be a set endowed with a distance p and let F: X - X be a continuous mapping of

Xinto X. (X,F)is called a dynamical system with space of states X and transformation F. If
x is the system's state in time t (t=0,1,...), then F(x) is the system's state in time t+1.

If X0 is an initial state (t=0), then x°, x'=F(x%), x2=F2(x%)=F(F(x%)) are successive states
(t=1,2,...). The sequence (xt=Ft(x°))t=O’1“_. is called a trajectory going out from x°.

A point x* is called an equilibrium if it is a fixed point of F, that is,
F(x*)=x*
A point x* is an equilibrium if and only if x*=lim F{(x°) for some x°-

An equilibrium x* is said to be stable if for any point x sufficiently close to x* the trajectory
going out of x converges to x*, that is, if the system has for any reason left the equilibrium
state x*, it will be returning to it provided that it has not moved too far away from x*. Points
which are “sufficiently close” to x* are those lying in a neighborhood U(x*,r) of x* for some r>0
where U(x*,r)={xeX: p(x*,x)<r} (the set of points whose distance from x* is smaller than r).

Symmetric games played by a population of players

Consider a symmetric game with a finite set of strategies {s, ,...,s, } and payoffs of the player
1 given by the matrix (u,.j) with nonnegative entries.

Let X = {x=(x,...x,): x,2 O,E x,=1}denote the set of m-dimensional probability
i=1

distributions. For any vector x in X, we interpret its ith coordinate x; as the relative frequency
of players who use strategy s, in all games they play at a given period t with other members
of a closed population. A measure of ith strategy's fitness in state x is defined as the mean
payoff of a player who uses strategy s, in games played with other members of the
population, symbolically.
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V(%) = xju,+x,u,+-+x,u, = Z;xjuij
=

For example, if all players use strategy s,, then the current system state is given as the
probability vector (1,0,...,0). We have then V(1,0,...0)=u,,

The average fitness in a population in state x is defined by the formula
Vx) = x, V() +-+x,V,(x) = Y x,V,(x)
i=1

Evolution
To construct a dynamical system with such a space of states X, we need to define a
transformation F of X into X. Assume that an F is defined in such a way that the following

conditions are satisfied for any x in X:

If x=0 then F(x)=0. If x>0 and xj>0, then

Fe), _ F@), i V@ <V, A Ay i V) < V@
X. R X.
F(;) F(;c). or, equivalently, A;. Ax.
Le i V) - V) — = —L i V) = V)
X; X; X; X

where Ax; = F(x), - X;.
Every F with these properties is called an evolutionary process. The quantity F(x)/x; shows
the direction (growth or decline) and intensity of change in ith strategy frequency between
the current and next stage of the process. Under evolutionary process, the frequency of a
strategy which is currently fitter than another strategy grows relatively faster.
If Fis an evolutionary process, then

F(x)=x; for all j iff \/i(x)=\/j(x) for any i,j such that x>0 and xj>0,
that is, x is an equilibrium iff any two strategies which have survived are equally fit. The
sufficiency of this condition results from adding up the two sides of equation F(x)ixj=F(x)jx,.

over all j

Any probability vector Z such that z’ 1 and z’ =0 for any j#i is automatically an equilibrium.
If Z stable, then strategy S; is said to be evo/ut/onarlly stable under F.

The concept of equilibrium stability has a definite meaning only if we define a distance in the
space X of m-dimensional probability vectors. Let the distance between x and y in X be

11



given by the formula p(x,y)=max | x;-y;|. Then p(z 'x) = Max ;2 "j x| = 1-x, = ; x,. The

neighborhood of Z with radius r consists of all probability vectors x such that x>1-r.

Strategy s; is evolutionarily stable under F if there is an r>0 such that /im Fi(x) = Z forany
x such that x>1-r. The infinite sequence Ft(x)t=0,1 converges to Z, by definition, iff for

any >0 there is a t such that for every t=t p(Fi(x),Z)<¢, that is, F(x)>1-¢, As a
consequence, lim F(x) = Z' iff lim F(x); =1 (hence lim F’(x)j =0 forall j=i).

Proportional fitness rule (PFR)

Let us define F by the following formula known as “proportional fitness rule”

Vi(x)x.

Fx), =
V(x)

Thus, F(x), >x; iff Vi(x)zl_/(x). Any strategy occurs more frequently in time t+1 (“in the next

generation”) if and only if its fitness in time t is above the current average in the population.

Example: IPD with the strategy set restricted to s,=ALL D, s,=TFT

_
1 2 ALL D TFT
i .. % p
1-6 1-6
ALL D p 5
_ T+ P
1-06 1-06
T+ 5 P i
1-8 1-8
TFT 5 R
S+ P -
1-6 1-6

Let us represent any x=(x,,x,) as (g,1-¢). Since V,(x) and V,(x) are functionally related to
g, we write V/(€) instead of V(e,1-¢)

(e+(1-¢)0)P+(1-¢)(1-0)T
1-5

V,(e) = eu(4LL D,ALL D)+(1-€)u(ALL D,TFT) =

12



e((1-8)S+5P) + (1-€)R

V,(€) = eu(TFT,ALL D)+(1-&)u(TFT,TFT) = T

V() = eV (e)+(1-e)V,(e)

A state (e,1-¢€) is an equilibrium if e=1 (all players play ALL D) or €=0 (all play TFT) or 0<e<1
and V,(e)=V,(g). The only solution of the latter equation is given by the formula

. - 8(T-P)-(T-R)
8(T-P)-(T-R)+(R-S)-5(P-S)

For a fixed value of 9, the state of equilibrium (€,1-¢) where € is given by the above equation
represents balanced co-habitation of ALL D and TFT in a population.

Let g, represent the initial frequency of players using ALL D, and let €, = F(g, , )=F’(80) stand
for the respective frequency at time t. If £,=¢(3), then the frequency &, does not change over
time as shown below where T, R, P, S are given Axelrod values 5, 3, 1, 0 and 0=2%5,
€,=€(0)= %.

t Vile 1)  Vao(eq)  Vey) e~F(e,4) 1-%

1 4.33 4.33 4.33 0.6667 0.3333
2 4.33 4.33 4.33 0.6667 0.3333
3 4.33 4.33 4.33 0.6667 0.3333

The equilibrium is not stable: a slightest change of € results in a process that converges to
(1,0) or (0,1). If e>g(d) then ALL D supersedes TFT; if €<g(d), then TFT wins the contest.
The processes of approaching these states are shown below.

ALL D beats TFT

£,=08>%=5

1 3.80 3.40 3.72 0.8172 0.1828
2 3.73 3.28 3.65 0.8357 0.1643
3 3.66 3.15 3.57 0.8552 0.1448
4 3.58 3.01 3.50 0.8752 0.1248
5 3.50 2.87 3.42 0.8952 0.1048
6 3.42 2.73 3.35 0.9144 0.0856
7 3.34 2.60 3.28 0.9321 0.0679
8 3.27 2.48 3.22 0.9478 0.0522
9 3.21 2.37 3.16 0.9610 0.0390
10 3.16 2.27 3.12 0.9716 0.0284
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TFT beats ALL D

80=0.5< 23=0

1 5.00 5.50 5.25 0.4762 0.5238
2 5.10 5.67 5.39 0.4498 0.5502
3 5.20 5.85 5.56 0.4208 0.5792
4 5.32 6.05 5.74 0.3895 0.6105
5 5.44 6.27 5.95 0.3563 0.6437
6 5.57 6.51 6.17 0.3217 0.6783
7 5.71 6.75 6.42 0.2865 0.7135
8 5.85 6.99 6.67 0.2515 0.7485
9 5.99 7.24 6.93 0.2177 0.7823
10 6.13 7.48 7.18 0.1857 0.8143
T-R

If 6 < =—— (0.5 for Axelrod payoffs), then €(d)<0 which is impossible. Thus, for such a d only

T-R
T-P
0<d<1 and O<e<1 the trajectory going out of (¢,1-¢€) converges to an equilibrium.

ALL D is evolutionarily stable. If 6 > so are both ALL D and TFT. Note that for any

1
0 TFT
Z
ALL D
0 e 1

A necessary and sufficient condition for a strategy
to be evolutionarily stable under PFR

Suppose m strategies s,,...,s,, are available to 100 players, but only s, is actually used in
bilateral contests by all of them. What happens if one player switches to strategy s, while 99
players go on playing s,? If s, is evolutionarily stable under PFR, then the deviant (“mutant”)
will leave the population (“die”) or will play s, back again.
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The problem of characterizing strategies which are evolutionarily stable under PFR was
dealt with by Bendor and Swistak (1992, unpublished paper). According to their theorem
given below every evolutionarily stable strategy is the best reply to itself, but collective
stability alone does not entail evolutionary stability.

Theorem 3. In a population playing a symmetric game with strategies s,,...,s,, and payoff
matrix (u,.j), a strategy s; is evolutionarily stable under PFR if and only if for all h=i, u; > u,,
if u,=u,,thenu, >u,,.

Proof of necessity

To simplify notation, let i=1. If s, is evolutionarily stable under PFR in the game with m
strategies, then so it is in the game with two strategies: s, and s, . Let h=2, again to simplify
notation. Assume for an indirect proof that (a) u,,<u,, or (b) u,,=u,, and u,,<u,,. Put
d,=Uy,-Uy4, dy=U,,-U,, and rewrite V,(x)-V,(x) as x,d,+x,d,.

Consider case (b)first. Then, forany x, V,(x)- V, (x)=x,d, >0, so that V,,(x)= V, (x). Hence, Vz(x)zl_/(x)

Vy(x)
V)
F’(x)2 >X, for any x,>0, which contradicts the assumption that (1,0) is a stable equilibrium.
Indeed, stability implies that /im Ft(x)2=0 if x is sufficiently close to (1,0), that is, if x,<r for
some r>0.

If (a)is the case, then V,,(x)-V,(x)=(1-x,)d,+x,d,=d,-x,(d,-d,) and d,>0. There exists
an r>0 such that d,-x,(d,-d,)>0 if x,<r. Therefore, V,(x)>V,(x), V,(x)>V(x)

which implies in turn that F(x),= x,>x,\We conclude that F’(x)zzx2 forany t, so that lim

Vo(x
F(x)zzﬁxfxzif x,<r'.Letus fix an x such that 0<x,<r'=Min{r,r’}. Then lim F’(x)2=0, which
V(x
means that there is an integer t'>0 such that Ft(x)2<r‘ for all t>f'. The sequence (Ft(x)z),
t=t,t'+1,... whose terms are bounded from above by 1 and increase with t must converge to
a number greater than 0 (because F*1 (x)2>Ft'(x)220), which is a contradiction because the
sequence beginning from ' has the same limit O as the whole sequence (Ft(x)z), t=0,1,...

Proof of sufficiency (complete only for m=2))
To simplify notation, let i=1. Assume that for any h=1, u,,>u,,; ifu,,=u, ,, then u,,>u,,.

(1) The first step will be to show that for h=2,...,m, V,(x)>V,(x) for any x#Z' in some
neighborhood U(z',r,) of 2z'=(1,0,...,0). For h=2, V, (X)=X U3 +XoUso+-+X Us.
Vo (X)=X4 Uy FXoUgy++X Uy o, SO that V, (X)- V,(X)= X e,+X,e,+-+X e where e=Uy Uy,
J=1,...,m. We distinguish two cases: (a) u,,>u,,, ore,>0; (b) u,,=u,, and u,,>u,, ,ore,=0
and e,>0.

(a) Since the linear function f(x)=x,e,+x,e,+-+x_e,  is continuous and f(z! )=e,>0, there
must exist a neighborhood U of z' such that f(x)>0 for any xeU.

(b) If m=2, then V., (x)- V,(x)=x,e,>0 for any x,>0. How to prove this for m>2 ?
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(2) We conclude that V,(x)>V,(x), h=2,...,m, xeU=U(Z",r), x=Zz", where =Min r,. Hence,
forany xeU, V,(x)>V-(x), which implies that F(x),>x,. Notice that F(x)cU for xcU. The terms
of the increasing sequence F’(x)1 are bounded from above by 1, so the sequence has a limit
which must be equal to 1.

Problems for further study

How to prove (or possibly disprove) Theorem 3 for symmetric games with more than 2
strategies? Is the sequence Fi(x) convergent for any x? (does evolution always lead to an
equilibrium?) Can other equilibria (those in which two or more strategies have non zero
frequencies) be stable?

Temat ,Gry w populacjach. Procesy ewolucyjne” wigczytem do programu mojego kursu ,Teoria gier i
decyzji dla socjologéw i psychologéw” po raz pierwszy w roku akademickim 2004/05. W maju 2005
przygotowatem dla siebie notatke do wyktadu (tekst zredagowatem po angielsku). Za gtdéwne zrédto (poza
klasyczng ksigzkg Axelroda The Evolution of Cooperation) postuzyt mi artykut J. Bendora i P. Swistaka.
“The Evolutionary Stability of Cooperation.” (American Political Science Review 91 (1997): 290-307; ttum.
»,Ewolucyjna stabilno$¢ kooperacji”. Studia Socjologiczne 1998 nr 3: 127—-171). Czytajac te prace, staratem
sie zrozumie¢ sens matematyczny przedstawionych tam wywodow (w tym sens kluczowego pojecia
.ewolucyjna stabilno$¢”), a gdy pojawily sie trudnosci, uznalem, ze tatwiejsze bedzie samodzielne
poruszanie sie (tzn. korygowanie niejasnosci w definicjach i dowodzenie twierdzeh na wtasna reke). Stad
okreslenie mojej notatki jako "Lecture note evolving into a research note”. Utknatem, probujac dowiesé
Twierdzenia 3 dla populacji z wiekszg od 2 liczbg strategii (wszakze nie mam pewnosci czy twierdzenie
to jest adekwatng rekonstrukcjg oryginalnego twierdzenia Bendora i Swistaka) i dalsze badania odtozylem
na pézniej.

Powtarzajac kurs w roku akademickim 2005/2006, zdecydowatem sie udostepni¢ stuchaczom (i
wszystkim innym zainteresowanym) swojg prywatng notatke, umieszczajac jg na stronie domowej. Moze
kto$ pomoze mi doprowadzi¢ badania do konca?

Do notatki dotaczytem dwa programy (pliki fournmnt.exei ipd.exe spakowane razem z plikiem ipd.pdf
w pliku ipd.zip): napisany w 1998 roku program ilustrujgcy turniej Axelroda, oraz nowy program (maj2005)
pokazujacy przebieg procesu ewolucji (PFR) w populacji, w ktérej dostepne sg trzy strategie w
Powtarzanym Dylemacie Wieznia: ALL D, ALL C i TFT (wyptaty w grze pojedynczej majg wartosci jak u
Axelroda). Uzytkownik proszony jest najpierw o podanie wartosci parametru delta, a nastepnie
poczatkowego rozktadu strategii ALL D i ALL C — dwu liczb, ktérych suma nie przekracza 1; czestos¢ TFT

program oblicza odejmujac te sume od 1.
ég\

http://www.cyf-kr.edu.pl/~ussozans/
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