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1. INTRODUCTION

I wrote NETAID to help myself and fellow mathematical sociologists to analyze power in
one-exchange networks. The program is now offered free to all interested in Network Exchange
Theory (NET).

An exchange network is a social system such that the actors occupying positions in it can gain
valued resources only by concluding two-party transactions with their 'neighbors' in a communication
network which is mathematically modeled as a connected graph. In a one-exchange network, the
interdependence of dyads in the system is induced by the  one-exchange rule which permits each
actor to make only one deal in a round (a stage of the networkwide negotiation process).

The one-exchange rule determines the family of transaction sets. Each transaction set, or a
matching (the term used in graph theory) is a collection of lines such that no two of them have a
common endpoint. A transaction set is called maximal if it cannot be extended by a line without
violating the one-exchange rule.

The program's welcome screen shows the complete one-exchange network with 5 positions. Next
to the adjacency matrix of the transaction opportunity graph you can see the graph's geometric
representation. Two lines which form one of 15 maximal transaction sets are drawn in blue. Four
positions which are 'included in a transaction’ have blue labels; the fifth position with red label is
'excluded.’ 

In general, we say that position P can exclude position Q if there exists a maximal transaction set
T such that P is an endpoint of a line in T ('P is included in a transaction in T'), and Q is not an
endpoint of any line in T ('P is excluded from transactions in T').

!

My interest in theory and research in NET dates back to 1990 when I became affiliated with the Chair
of Group Processes headed by Jacek Szmatka. In Spring 1993 I read the special issue of 'Social
Networks’ (vol. 14, no. 3-4, 1992) on NET, edited by David Willer, where I found inspiration for my
own mathematical research on exchange networks.

The first version of NETAID written in 1993 had only a procedure for computing Graph-theoretic
Power Index defined by Markovsky, Willer, and Patton (1988). The second version of my program
was attached with my 1997 paper in which I offered a mathematical elaboration of the
Equidependence Theory of Cook and Yamagishi (1992). The aim of the second procedure then
added to NETAID was to examine convergence of the algorithm I proposed as a method to determine
an alternative solution of Cook and Yamagishi's equidependence equation.

The third version of NETAID I completed in Summer 2001 provides tools for the analysis of
exclusionary power which is one of the main topics of my book currently in process. The third
procedure (see Section 6) determines four elementary relations, lists all maximal matchings, and
computes five power parameters, including the one known as 'exchange-seek likelihood of inclusion'
(see Markovsky et al. 1993). The next version of NETAID (October 2002) determines, in addition, the
type (strong vs. weak) of elementary power. The latest version contains the original iterative algorithm
proposed by Cook and Yamagishi so that a comparison of two equidependence theories is now
possible.

2. 'HARD’ AND 'SOFT' ENVIRONMENT YOU NEED TO RUN NETAID

I wrote NETAID in Quick Basic 4.5 and compiled the source code as the main program NETAID.EXE
which calls 3 compiled subprograms (files NETSUB1.EXE, NETSUB2.EXE, and NETSUB3.EXE). File
BRUN45.EXE must reside in the current directory to establish communication within the chained



3

program package. NETAID runs best under DOS 5.0 or any later version; if your PC uses Windows
95 or 98 as operating system, switch to the MSDOS mode.

NETAID can process both 'small' (2-6 nodes) and  'large' (7-8 nodes) one-exchange networks. 9-node
networks are also accepted, but 3rd NET subroutine will be completed only if the number of
transaction sets does not exceed 764, which is the number found for the complete 8-node network.

Use the fastest computer available. If you embark on analyzing exclusionary power in 'large' and
'thick' networks, and have at best a 386 or 486 processor, you will have to wait many hours for the
results. I tested NETAID on a PC equipped with a Pentium III processor with a 733 Mhz clock. To
compute the most sophisticated power parameter for the 6-, 7- and 8-node complete graphs that
computer needed 18 seconds, 20 minutes, and 53 hours, respectively. 

At last, you should have a VGA graphic card and a color monitor in order to see network lines drawn
in colors on the Quick Basic Screen 9 (80x25 characters in text mode, 640x350 points in graphic
mode)

3. MAIN MENU. INPUT AND OUTPUT FILES

NETAID is intended to be user-friendly through extensive use of menus and on-screen instructions.
To select an item from a menu just type its number. Type Y or N to answer yes-or-no questions
(lowercase and uppercase letter are never distinguished). Press the space key when you are
prompted to do so in order to move on. The Enter key is used to confirm keyboard input only if strings
to be typed may vary in length.

In filenames, only letters, figures and the underline character are accepted; the name length may not
exceed 8 characters. Input files must not have extensions while output files receive extension TXT
automatically.

You start from the NETAID Main Menu which allows you to choose the source of data passed to the
program's procedures. When you pick out option #1, you are asked to enter the name of a graph
source file. Such an ASCII text file is structured as a sequence of lines; each input line containing
all information needed to define one graph must begin from the number of nodes n. If a figure from
the range 2-9 is not found in there, the line is skipped as a comment line.

The sequence of two-character node labels is recorded in the next 2n columns. The first element of
a label must be a letter; the second can be space, a letter, a figure or apostrophe. (If the initial letter
is not found for at least one node, NETAID will automatically label nodes 1,2,…,n as A,B,…). The next
2(n(n!1)) columns are reserved for the above-diagonal entries of the adjacency matrix listed row
by row from top to bottom.

The column past the 0-1 string is the last column read by NETAID. It may contain a space (the
default) or a letter which marks the graph. Marks can be added, changed or removed during
on-screen display of graphs (you can save the changes in a new source file). The graphs marked with
the same letter can be later retrieved for display. If no mark is found, there remain two modes of
searching the graph list.

First, graphs can be listed one by one down from the number given by the user. If you choose search
mode #2, you will be asked every time to enter the reference number of a graph to be displayed.
Reference numbers are assigned to the graphs by the program which counts input lines in the file and
reads each to check its contents for consistency. To make it easier to prepare a properly structured
file I endowed NETAID with a graph definition procedure (option #3 in the Main Menu) which allows
to edit a new source file or append more lines to an already existing file. The same subroutine is used
to define a graph ad hoc. You can use this option (#2 in the Main Menu) when you want to examine
a single network you will not need to save for further study.

To define a graph, you must enter the number of its nodes, first. Next you are prompted to attach
labels with the nodes numbered from 1 to n. The next step is to fill out the 'upperhalf' of the adjacency
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matrix. As soon as you put 1 in an ij cell, the line joining ith and jth point is added to the picture drawn
on the screen at the same time. The display of graphs in NETAID is based on depicting nodes as
vertices of a regular polygon (the vertices are numbered counterclockwise).

NETAID can read a file with at most 12500 input lines. The contents of the graph source file is
rewritten to a temporary random access file (extension TMP is added to the name of the source file)
from which records are selected to be processed by NET procedures. 

To make possible systematic study of a large class of one-exchange networks I prepared a special
source file called CGRAPHS containing all 995 non-isomorphic connected graphs with 2-7 nodes.
The list of their adjacency matrices comes from the Appendix to a paper by John Skvoretz (1996).
I reshuffled the node numbers in each graph and transformed its adjacency matrix accordingly so as
to ensure that the segments corresponding to graph lines under the polygon geometric representation
intersect at a minimum number of points.

By means of a special program I generated also a structural labeling of positions for each network.
Automorphically related nodes are then assigned the same letter; if there are at least two nodes in
one class, successive numbers are appended to the letter. In addition, letters A,B,... have been
selected in such a way that the alphabetic order of labels agrees with the ranking of nodes with
respect to decreasing degree (the number of 'neighbors' of a node).

Once you've passed to NETAID your decision on data input, the program will ask you whether the
results of NET procedures are to be saved in a file. To give a negative answer, just press Enter at the
filename prompt.

An output file produced by NETAID is a simple ASCII text file (the extension TXT is added by the
program) whose lines contain only characters available from the standard keyboard. The file, by its
content and structure, basically reproduces the text data displayed on the screen. However, in some
cases the numbers shown in a rounded form are saved in the output file with greater accuracy.

4. GRAPH-THEORETIC POWER INDEX

To compute Graph-theoretic Power Index (GPI) for ith point according to the definition given by
Markovsky, Willer and Patton (1988) one needs to find – for k from 1 through the length of the longest
simple chain in this graph – the maximum number of pairwise point-disjoint simple chains of
length k going out of ith point. GPI is obtained by adding up  these numbers over odd k and
subtracting from the result the similar sum found for even k.

In Markovsky, Willer and Patton's theory, GPI not only generates an ordering of network positions with
respect to 'power'; it is also used to define the exchange-seek relation. The current version of
NETAID implements the definition of this relation modified by Lovaglia et al. (1999). It is based on
classifying any neighbor Q of P as weaker than P [GPI(Q)<GPI(P)], equal in power to P
[GPI(Q)=GPI(P)], or stronger than P [GPI(Q)>GPI(P)]. Then P seeks exchange only with all Qs in the
weakest of all nonempty categories of its neighbors.

NETAID determines the exchange-seek relation so defined and identifies three cases possible for
each line: reciprocated partner choices, unilateral choice, and mutual no-choice. The three cases are
marked in the geometric representation of the network by green, white, and red line color,
respectively. In Markovsky et al.'s theory the latter two cases are referred to as network break lines.

If such a line is found, NETAID does the Iterative GPI Analysis  (Markovsky et al. 1993). GPI values
are recalculated for all nodes of the graph stripped of all red and white lines, and the exchange-seek
relation is determined again from the new values but the removed lines remain in the graph. If a
network break line is found again, the procedure is repeated, and continued until the current GPI
values coincide with those obtained at an earlier step. In some cases, the state once attained repeats
at the next step and becomes the final state. However, for many graphs, the iterative procedure
results in reaching a state which opens a sequence of two or more 'solutions' that are since then
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cyclically repeated infinitely many times. NETAID stops GPI analysis when first such cycle is closed.
For 9-node networks the process continues until the number of steps attains the maximum of 31
found for all connected graphs with 2-8 nodes.

The paper by Lovaglia et al. (1999) describes an iterative procedure which can be applied when
Markovsky et al.'s algorithm leads to a repeating cycle of solutions. The new procedure is not
available in NETAID (a program written by John Skvoretz is mentioned in the cited paper).

5. EQUIDEPENDENCE ITERATIVE PROCEDURES

Cook and Yamagishi's (1992) theory stemmed from Emerson's idea of equal dependence of
exchange partners. Formally, it is the theory of a certain dynamical system associated with a
one-exchange network. The space of states of this system is made up of all n×n matrices R such

ij ij ij ji ijthat R +R =C if positions i and j are connected in the network, and R =R =0 otherwise. R  is
interpreted as the share that actor i currently hopes to gain in a transaction with actor j. A transaction
consists in splitting the pool of C  'profit points' between i and j.

ikThe ij entry of alternative profit matrix A(R) is defined for tied i and j as the maximum of R  for k

ijother than j; A(R) =0 if i and j are not connected. D(R)=R!A(R) is called the dependence matrix. The

ij ji'principle of equal dependence' claims that the networkwide bargaining ends when D(R) =D(R)  for
any network line ij, which means that the final R must satisfy the equidependence equation
D(R)=D(R) , or R!A(R)=R !A(R)  where  is used to mark the transpose of a matrix.t t t t

Cook and Yamagishi (1992) offered also a method to find a solution of this equation, but their iterative
procedure does not guarantee that the matrix so obtained satisfies for any ij the

ij jiself-complementarity condition R +R =C. In my 1997 paper, I showed how to correct this 'flaw'
which, as I see it now, is not a flaw but an alternative theoretical option (see the end of this section).
First, I noticed that the equidependence equation can be rewritten in the form T(R)=R where T is the
transformation of the space of states into itself which assigns 2(C+A(R)!A(R) ) to R. T is thet

composition of two mappings: A: R6A(R) and U: S->2(C+S!S ). Mapping A defines new profit claimst

addressed by i and j to each other as the maximum payoffs they could obtain from transactions with

ij jialternative partners. The new claims A(R)  and A(R)  which need not sum up to C are adjusted by the

ij jimapping U which restores complementarity, assumed for initial claims R  and R . As a consequence,
T maps the set of self-complementary R-matrices into itself, and every R satisfying the
equidependence equation and self-complementarity condition is a fixed point of T. 

Having proved that T must always have a fixed point, I solved the equation T(R)=R with the constraint
R+R =C for all connected graphs with 2–6 nodes. For larger graphs the task becomes too laborious,t

so that an iterative procedure is needed. The algorithm offered in NETAID is based on the following

0 0theorem: if the sequence T (R ), where T  is kth power of T and R  is an initial matrix, converges tok k

a matrix R, then R is a solution of the equation T(R)=R. If the solution is known, one can examine its
reachability from varying initial states.

The equidependence iterative procedure programmed in NETAID applies only to homogenous
one-exchange networks in which every line of the transaction opportunity graph is assigned a profit

0pool of the same size, set in NETAID to 100 points. The entries of R  can be typed from keyboard
or filled with random values; the third item in the menu is setting the 50-50 pool split in every line.

The iteration process stops after the number of steps entered by the the user (1000 is the maximum
allowed). The stop condition can also be imposed by setting an upper bound on max

0 ij 0 ji|T (R ) !T (R ) |; then the process will end as soon as the distance between last two iterations doesk k-1

not exceed the given threshold, say, .01 (.0001 is the minimum accepted). 

The value of Equidependence Power Index for ith position was defined by Cook and Yamagishi

ij(1992) as max R  over all j. The EPI values, computed by NETAID for the initial and final R, are
recalculated for C=24 (the pool size used in experiments) and displayed in the rounded form at the
vertices of the graph's geometric representation. Green and red lines show all reciprocated positive
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and negative exchange seeks. I defined the exchange-seek relation generated by R by the

ij icondition: i seeks exchange with j if and only R =EPI(R) .

In 2002 I noticed that Cook and Yamagishi's algorithm can also be expressed in terms of a

0transformation whose successive powers are calculated for a given initial matrix R . Let T' be the

ij ij ji jicomposition of A: R6A(R) and the mapping U':S6U'(S) such that U'(S) =U(S) , U'(S) =U(S)  for every

ij ji ij ji ji ijnetwork line ij for which S +S #C, and U'(S) =C!S , U'(S) =C!S  for every network line ij for which

ij ji ij jiS +S >C. Consider the set of R-matrices such that R +R #C for every network line ij. Clearly, T'
transforms this set into itself. Cook and Yamagishi's equidependence solution can be defined
analytically as a fixed point of T'. Both solutions, the one given in my 1997 paper and Cook and
Yamagishi's solution, satisfy the equidependence equation. They share many properties, in particular,
both generate symmetric exchange-seek relations. A very important difference between two variants
of equidependence theory is that Cook and Yamagishi's theory sometimes attributes equal power to
two positions P and Q such that P is the only available partner for Q, but P has other partners besides
Q. In my variant of equidependence theory, EPI always points to the advantage of P over its hanging
neighbor Q.

6. ANALYSIS OF EXCLUSIONARY POWER

Willer and Markovsky (1993: 340) claim that 'if a structure permits one set of actors to exclude a
subset of the actors to which they are connected which cannot exclude in return, then the first set
develops power over the second.' The concept of power is formalized next by means of structural
parameters (GPI, ESL). Since 1991 the problem of how to formally distinguish 'weak' from 'strong'
power has pervaded the Elementary Theory variety of NET. Recent papers (Lovaglia et al. 1999,
Simpson and Willer 1999) take up this intriguing issue once again. The intention to save as much as
possible from earlier theory results in that the procedures proposed to solve the problem are very
complex. In my book The Mathematics of Exchange Networks (in process, to appear in 2005) the
concept of exclusionary power is reconsidered so as to make the theory foundations more precise,
and, first of all, simpler.

Having already defined the exclusion relation (see Introduction) I define in turn the elementary
power relation by the condition: Position P has power over position Q, symbolically, P>Q, if and only
if P can exclude Q and Q cannot exclude P. P and Q are said to satisfy the elementary equipower
relation (P-Q) if and only if P cannot exclude Q and Q cannot exclude P. Elementary power and its
inverse (P<Q iff Q>P) are antisymmetric and transitive relations; the equipower relation is an
equivalence (all proofs will be given in my book). The fourth elementary relation possible between two
network positions is that of mutual excludability: P can exclude Q and Q can exclude P.

When you order the 'analysis of exclusionary power,' NETAID will let you see first the n×n matrix
having in any cell one of four symbols: >,<, –, + standing for the four elementary relations. On the
right margin are shown the values of two simple power parameters. The first called the Power
Degree is defined for a position P as the number of Qs such that P>Q. The second called the Power
Level is the length of the longest (directed) path from P in the power digraph whose arcs are node
pairs ordered by the elementary power relation.

In general, the term structural power parameter is referred to any mapping F, defined on the set
of nodes, which assigns the same numerical values to automorphically related nodes and preserves
the elementary power and equipower relations (P>Q implies that F(P)>F(Q); P-Q implies that
F(P)=F(Q)). A power parameter can be used to extend the power relation to pairs of positions which
can exclude each other. When such two positions have the same value of F they are treated as
equally powerful, otherwise one position is considered more powerful than the other.

Given a probability distribution on the set of maximal transaction sets, a power parameter can
be defined by assigning to P the probability that P is included in a transaction; the latter probability
is obtained by summing the probabilities of all maximal transaction sets covering P (T covers P if
PQ0T for some Q). The simplest probability power index PPI1 is obtained by assuming after
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Friedkin (1992) that all maximal transaction sets are equally likely. Then P's likelihood of inclusion
is simply the ratio of the number of maximal sets which cover P to the number of all maximal sets.

NETAID computes also two other probability power measures noted PPI2 and PPI3. They are defined
in the context of a Markov chain model with the set of all transaction sets as the space of states and
non-zero transition probabilities allowed only from S to S' where S is a subset of S'. The empty set
is the unique initial state while maximal transaction sets are the only final (absorbing) states. Then,
the probability of a maximal set T is determined as the probability that T is reached from the initial
state in any number of steps.

PPI2 is computed on the assumption that S can be extended in one step by only one transaction, and
all transitions from S to its one-line extensions are equally likely.

The definition of PPI3 assumes that S can be extended in one step to any S' with the probability which
depends on how frequent are patterns which yield S' among all profiles of partner choices possible
to be made among themselves by the positions not covered by S. The computations show that PPI3
takes the same values as the parameter defined by Markovsky et al. (1993) known as
Exchange-Seek Likelihood (ESL).

As soon as PPI1 is found automatically NETAID proceeds to compute PPI2 or PPI3 or both according
to user's request. Unlike the calculation of PPI2, computing PPI3 for ’thick' graphs may take a lot of
time. The probability distribution which has been generated for the computation of the probability
power index chosen last is later used to determine the probabilities needed on further steps of the
procedure execution.

In the first step, maximal transaction sets and their probabilities are listed and saved in the output file
upon request. A green line means that two tied positions 'seek exchange' with each other. In the
output file, maximal sets with all lines printed in green are marked with *. Unilateral exchange seeks
and mutual rejections are displayed in the listing and network picture in white and red, respectively.

The definition of exchange-seek relation makes use of the elementary relations between P and all
Qs tied to P. If all neighbors of P are in the same relation with P, P seeks exchange with all of them.
If P>Q and P-Q', then Q but not Q' is sought by P; if P<Q and P(+)Q' (mutual excludability), then P
seeks exchange with Q' but not with Q.

We say that two positions P and P' are in the same power component if they are joined by a chain
made up of lines such that two positions which form a line in it seek exchange with each other. This
relation is used to define strong and weak variety of elementary power. Let us first define a high
power position as any P such that P>Q for some Q tied to P. The elementary power of P over its
neighbor Q is called strong  if Q seeks exchange with P and P can exclude Q by means of a maximal
transaction set T which has the following property: any high power position P' (including P) in the
same power component has a neighbor Q' such tha P'Q' is in T and P' and Q' seek exchange with
each other.

If the elementary power of P over Q tied to P is not strong, it is called weak.

NETAID determines the type of power for any two tied positions. Weak power and strong power
dyads are marked on the drawing with arrows  –, and –<. The elementary equipower relation is shown
by placing / across a line. Unmarked lines join positions in the relation of mutual excludability.

At the last step of the analysis, NETAID lists network lines and shows their selected characteristics.
Suboptimal lines are written in the form P Q instead of P–Q. A line is called suboptimal if it does not
occur in any optimal transaction set. Optimal transactions sets are those having the maximum
number of elements.

For any line there is given first its probability, found by adding up the probabilities of all maximal

PQtransaction sets containing the line. The difference d =PPI(P)!PPI(Q) is given in the next column.
The order of line endpoints is chosen in such a way that PPI(P) is always greater than or equal to

PQPPI(Q). As a consequence, d  $0.
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PQ QP PQ PQ QPThe GPI-R theory by Lovaglia et al. (1995) implies that x !x  equals 2Cd  where x  and x

PQ QPare shares of P and Q in the theoretically predicted split of the pool of C profit points (x +x =C).

The GPI-RD theory offered in the same paper takes into account the degrees of P and Q in assessing
the size of P's power over Q. A better solution recently suggested by Lovaglia and Willer (1999) is the
replacing of a PPI by its square. P's payoffs derived for C=24 from the GPI-R theory and its
refinement in question are given in columns labeled x and x'. As the authors stay with ESL, to see the
scores they predict, one must request the computation of PPI3.
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