Tropical ecology WBNZ-849

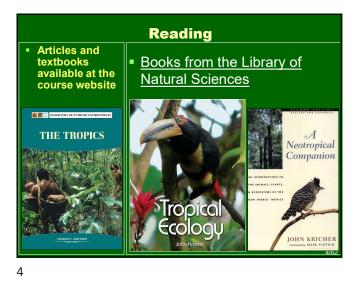
starting 14:45 (as in USOS)

Ryszard Laskowski

Institute of Environmental Sciences, Jagiellonian University http://www.cyfronet.krakow.pl/~uxlaskow/

- 1. About the course
- 2. Lecture #1: Introduction to tropical ecology

Course organization


- Place: Institute of Environmental Sci., Room 1.1.1
- Time: Friday, 14:45 17:15
 - 8 x 3 h (lectures & discussion classes)
 - 2 seminars (3 h each)
- Teachers: Marcin Czarnołęski, Wojciech Fiałkowski, Paweł Koteja, Ryszard Laskowski, Krzysztof Wiąckowski
- Evaluation:
 - final exam (5-6 open questions): 80%
 - active participation in classes: 20%

2

1

Teachers' emails

- marcin.czarnoleski@uj.edu.pl
- wojciech.fialkowski@uj.edu.pl
- pawel.koteja@uj.edu.pl
- ryszard.laskowski@uj.edu.pl
- krzysztof.wiackowski@uj.edu.pl

Supplementary reading in Polish

ATTENTION

The 'Tropical Ecology' course (WBNZ 849) is the prerequisite for 'Tropical Ecology Field Course' (WBNZ 850)

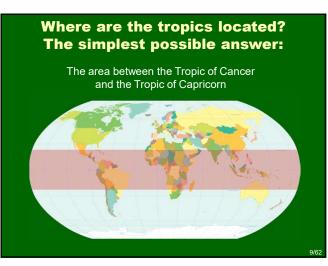
Topics:

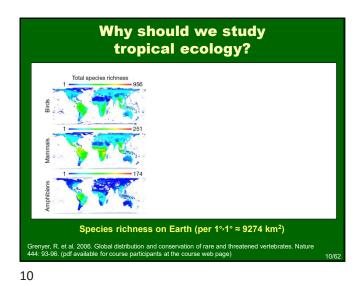
<u>Introduction to tropical ecology</u>: tropical biomes – geographical distribution and characteristics

Destruction and protection of tropical ecosystems

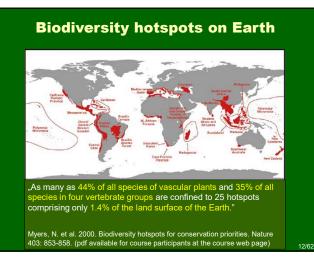
Equatorial rainforests - the most diverse biome on Earth

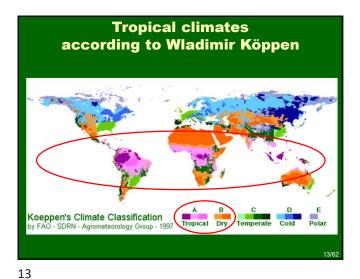
- gradients in biodiversity and theories explaining them
- diversity in life strategies


Adaptations in animals to hot deserts

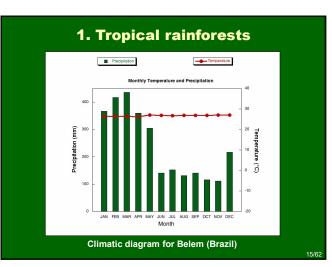

<u>Biology of coral reefs and mangroves:</u> environmental conditions and biodiversity.

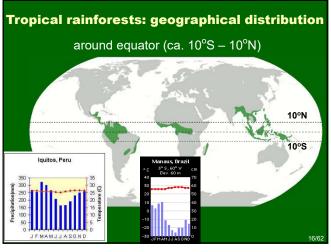
Introduction to tropical ecology


Where are the tropics?


- Origin of the term: from Greek τρόπος (tropos) = turn (the sun appears to "turn back" at the solstices)
- → Area between the Tropic of Cancer (23°30'N) and the Tropic of Capricorn (23°30'S)
- → Area of the Earth where the Sun is 90° above the horizon at least once every year
- → = tropical zone = torrid zone

Taxonomic	Poland	Uganda		
group	(312 000 km ²)	(241 000 km ²)		
vascular plants	2700	4900		
mammals	109	330		
birds	446	1061		
reptiles	9	165		
amphibians	18	52		





Tropical climates according to Köppen

- Group A: Tropical (megathermal) climates
 - Af: Tropical rainforest climate (~ 5 - 10° of the equator; in coastal areas can extend to 25°; no seasonality) = hygromegathermal
 - Am: Tropical monsoon climate (further from the equator; two seasons – rain and dry)
 - *Aw*: Tropical savanna climate (two seasons, wet and dry very clear and pronounced)
- Group B: Dry climates (arid and semiarid)
 - Only partly belong to tropics

Tropical rainforests: characteristics

- Very high annual rainfall: at least 1700 2000 mm
- Average annual temperature: 27 30°C
- High rate of biogeochemical cycles
- Soils: low in organic matter and nutrients due to intensive weathering (laterization → oxisols)
- Four-layer forests: (1) emergent layer single trees above the canopy (60-70 m); (2) canopy layer (30-45 m);
 (3) understory layer (only ca. 5% of light!); (4) forest floor (only ca. 2% of light)
- Richness of epiphytes and lianas
- Extreme species richness: >30% of all plant and animal species living on Earth at only 6% of Earth surface!

17

Tropical rainforests: types

- Lowland equatorial evergreen rainforests
 - annual precipitation above 2000 mm
 - Amazon, Orinoco and Congo basins, Indonesia, New Guinea
- Wet broadleaf forests partly evergreen
 - high annual rainfall, warm and wet summer and cooler and dryer winter
 Central America, Caribbean, West Africa, India, Indochina
- Montane cloud forests
 - cooler mountain climate, high rainfall, low cloud cover
 - tropical and subtropical mountains
- Floodplain forests
 - environmental conditions similar to lowland evergreen forests but in poorly drained areas → flooding
 - Borneo, Sumatra, Malay Peninsula, Indochina

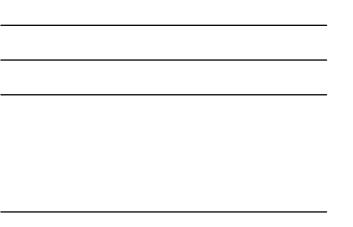
Nutrient turnover rate

Average retention time of dead organic matter and nutrients in forest litter: boreal forest (taiga), temperate broadleaf forest, and equatorial rainforest (*time in years*)

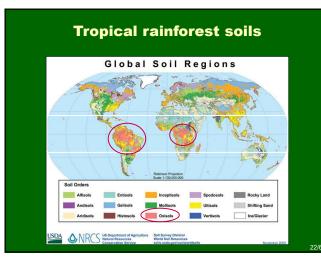
			· '			
Biome	Organic matter	N	Р	к	Ca	Mg
Taiga	353	230	324	94	149	455
Temperate forest	4	5.5	5.8	1.3	3.0	3.4
Rainforest	0.4	2	1.6	0.7	1.5	1.1

Schlesinger 1991

19

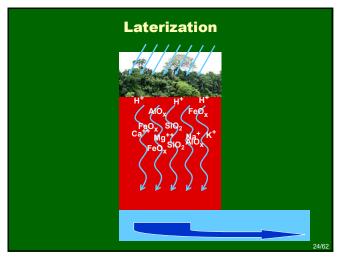

Productivity and carbon accumulation


Average NPP of selected biomes (**kg x m⁻² x year⁻¹**), , carbon accumulation rate (**g x m⁻² x year**⁻¹) and C(biomass)/C(soil)


Biome	Productivity	C accumulation rate	C(b)/C(s)
Taiga	0.8	11.7 – 15.3	0.55
Temperate forest	1.2	0.7 – 5.1	1.13
Rainforest	2.2	2.3 - 2.5	1.68
ligth & W/bittgker 197			00/00

20

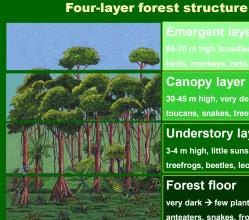
Main carbon pools in primeval tropical rainforests				
Part of the ecosystem	Accumulated carbon (t C/ha)			
Alive plants (above and underground)	210			
Dead trees and litter	10			
Soil	100			
TOTAL:	320			
After Jonathan Adams, Oak Ridge National L	_aboratory, TN 37831, USA 2	1/62		



Ferrasols (FAO) = Oxisols (USDA): location and pedogenesis

- Earlier called *laterites*; acc. to FAO *ferrasols*
- Definition: soils containing in the whole profile ≤10% leachable materials and <10% base saturation; high content of Fe and Al oxides
- Location: ca. 1/3 of the Earth's continental land area, mostly 15-25°S – 15-25° N
- Pedogenesis tropical weathering (*laterization*):
 - high precipitation + CO₂ → chemical weathering and leaching of humic materials and minerals from the soil profile
 - only stable Fe i Al oxides remain ightarrow rusty-red color

Ferrasols (Oxisols) - Kenya



25

Laterization – consequences:

- Leaching of virtually all organic matter and nutrients
 - soils very poor in nutrients
 - very small reservoirs of soil organic matter
 - plants have to use (re-cycle) all minerals released from decomposing litter very efficiently
 - no nutrient supply after forest destruction and removal of plants \rightarrow soils become infertile very quickly \rightarrow difficult forest regeneration
 - primeval forests replaced with secondary ecosystems (secondary forests of bushes)

26

Canopy layer

30-45 m high, very dense layer toucans, snakes, treefrogs, beetles

Understory layer

3-4 m high, little sunshine treefrogs, beetles, leopards/jaguars

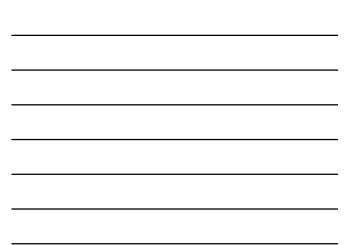
Forest floor

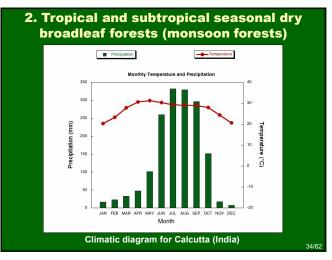
.srl.caltech.edu/personnel/krubal/rainforest/Edit560s6/www/whlayers.html

very dark → few plants anteaters, snakes, frogs, beetles

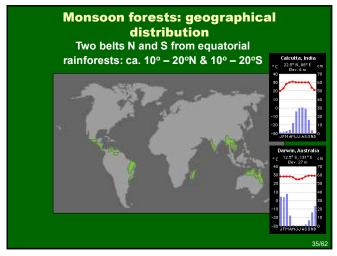
http://w

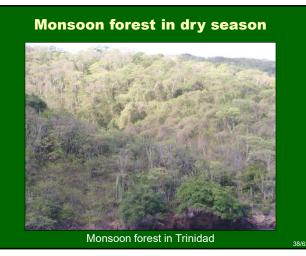
Species richness of tropical rainforests


- At 10 ha of forest in Borneo up to 700 tree species → as many as in whole N. America!
- At 1 Peruvian tree 43 ant species → as many as in whole UK!
- Ca. 3000 fish species in the Amazon river more than in whole North Atlantic ocean!
- Species numbers at 15 km² in Costa Rica:
- mammals 117 (*in whole Poland 105*); birds 410 (435); reptiles – 86 (9); amphibians – 43 (18); moths – 4000 (1200); vascular plants – 1668 (2700)

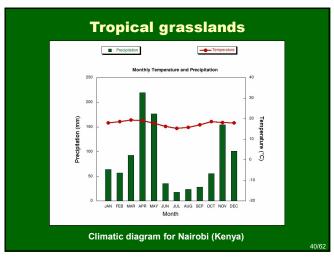

31

Tropical rainforests: montane cloud forests (fog forest)


- Specific type of tropical rainforests:
 - area: tropical mountains
 - environmental conditions: persistent or frequent low-level cloud cover and fog → reduction of direct radiation and evapotranspiration, very high humidity
 - ecosystem characteristics: particularly rich in epiphytes (mosses, ferns, orchids, etc.)


35

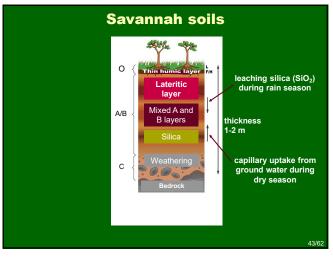
Monsoon forests: characteristics

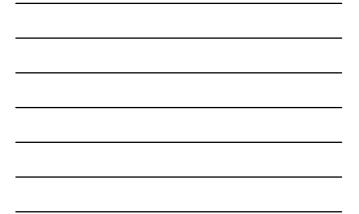

- High average annual temperature
- High annual rainfall (~1000 2000 mm/year)
- Clearly pronounced, long (few months) dry season
 - most trees shed leaves in dry season;
 - plants accumulating water;
 - → rich understory layer (plenty of sunlight in dry season)
 - three layers: (1) tree canopy; (2) understory; (3) forest floor

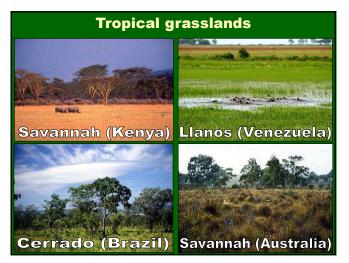
Main carbon pools in monsoon forests				
Ecosystem part	Accumulated carbon (t C/ha)			
Alive plants (above- and underground)	150			
Dead trees and litter	10			
Soil	100			
TOTAL:	260			
After Jonathan Adams, Oak Ridge National Laboratory, TN 37831, USA 37/62				

Tropical grasslands in the world

- Africa:
 - Savannah, e.g. Serengeti, Masai Mara high grasses with scattered acacia trees; large herbivores (40 ungulate species) and carnivores
- South America:
 - Llanos in Venezuela (Orinoco basin) flooded every year, with gallery forests
 - Cerrado in Brazil grassland covered with forest of different density and gallery forests; high plant diversity
- Australia:
 - Savannah (Northern Australia) grassland with scattered eucalyptus trees; herbivores – kangaroos and man-introduced ungulates


41

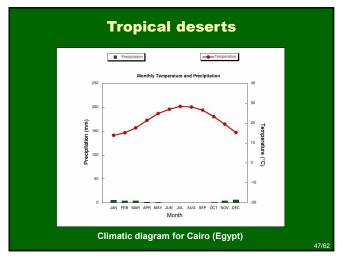

Savannah


- Average annual precipitation 1000-1500 mm (Köppen's Aw climate)
- Distinct, long dry season;
- Temperature: 20-30°C
- NPP: ca. 0.7 kg d.w. m⁻² year⁻¹
- Plants adaptations
 - to dry season: deep tap roots, thick bark, shedding leaves, storage organs (mostly underground)
 - to herbivores: solid sharp leaves, bitter taste, growing from beneath)

42/62

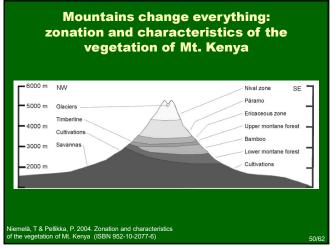
41/6

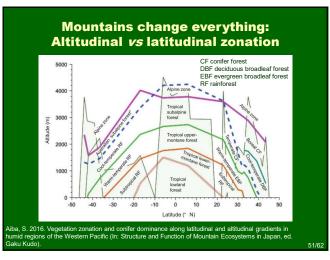




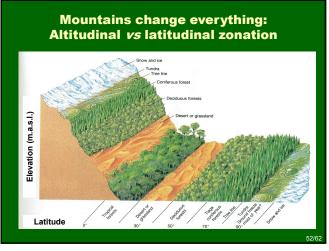
Main carbon pools in tropical savannah				
Ecosystem part	Accumulated carbon (t C/ha)			
Alive plants (above- and underground)	35			
Dead trees and litter	0			
Soil	55			
TOTAL:	90			
After Jonathan Adams, Oak Ridge National Laboratory, TN 37831, USA 45/6				

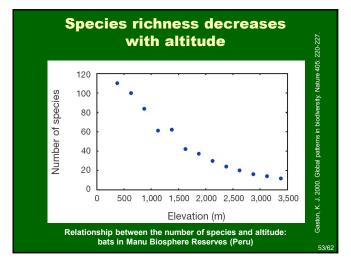
Main carbon pools in tropical grasslands besides savannah				
Accumulated carbon (t C/ha)				
12				
0				
42				
54				





_


Main carbon pools in tropical deserts					
Ecosystem part Accumulated carbon (t C/ha)					
1					
0					
0					
1					





53

Ecofloristic zones in tropical mountains

- Alpine: ~3800 ~4500 m
 - high mountain steppe: Afro-alpine, paramo, puna
- Subalpine: ~3400 3800 m
 - few lianas and vascular epiphytes, rich moss and lichen flora; characteristic groups: Ericaceae, Brunelliaceae, Asteraceae...
 - 'elf forests' at ridges
- *Montane*: ~2400 3400 m
 - short trees, even fewer species; few lianas, still many epiphytes; can be seasonal
- Submontane: ~1000 2400 m
 forest similar to that at lower elevation but with fewer species; trees ca. 25-30 m

55

Other tropical plant communities

Mangroves

- <u>areas</u>: shallow, muddy sea coasts;
- <u>structure</u>: trees or shrubs, very few or even just one species; no understory and forest floor; few epiphytes and lianas
- Gallery forests
 - <u>areas:</u> along valleys with surface or underground streams
 - <u>structure</u>: trees or bushes of different density; possible lianas, few epiphytes

57/62

_

Topics for the seminar:

- 1) The newest data on the role of tropical rainforests in global carbon balance.
- 2) The highest tree species diversity in the world where and why?
- 3) Species diversity (of selected groups) on altitudinal gradient in the tropics.
- 4) Is it possible to restore destroyed tropical rainforests? Área de Conservación Guanacaste - a case study in Costa Rica.
- 5) Tropical diseases: most important diseases, prevention & problems.

61/62

61

...?

Important dates (on my website):

- 13.10.2023 R. Laskowski lecture/discussion class: Course plan and rules; Introduction to tropical ecology: tropical biomes area, climate, solis and characteristics; latitudinal zonation 20.10.2023 R. Laskowski lecture/discussion class: Anthropogenic destruction and protection of tropical ecosystems; REDD initiative
- 27.10.2023 K. Wiąckowski lecture/discussion class: Tropical biodiversity: Latitudinal diversity gradient
- 03.11.2023 K. Wiąckowski How can so many species coexist in a tropical rainforest?
- 17.11.2023 W. Fiałkowski lecture/discussion class: Biology of coral reefs and mangroves: environmental conditions, biodiversity 24.12.2023 P. Koteja lecture/discussion class: Adaptations to hot deserts: water balance, behavioural and physiological mechanisms for water conservation; behavioural and physiological thermoregulation, life histories 08.12.2023 M. Czarnołęski – lecture/discussion class: Biodiversity in tropics: diversity in life strategies
- 15.12.2023 M. Czarnołęski lecture/discussion class: Tropical societies 12.01.2024 R. Laskowski et al. – seminar (groups 1, 2, 3); Due to the large number of students, there will be parallel seminar sessions.
 19.01.2024 R. Laskowski et al. – seminar (groups 4, 5, 6)

Seminar topics to RL: deadline 17th December