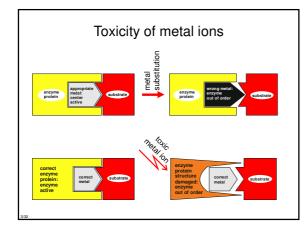
Ecotoxicology


- Toxic chemicals
- Mechanisms of toxicity (modes of action)
- Defense against intoxication; detoxification


Ryszard Laskowski Instyitute of Environmental Sciences, JU Gronostajowa 7, Kraków Room 2.1.2

https://home.cyf-kr.edu.pl//~uxlaskow

Major groups of toxic chemicals

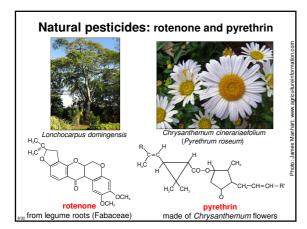
- · Chemical elements
- mostly trace metals (e.g. Zn, Cu, Pb, Cd)
- Inorganic chemical compounds
 - nitrates (NO $_3^-$) and nitrites (NO $_2^-$)
 - gases (SO₂, NO_x, O₃)
 - detergents (e.g. zeolite A, polycarbonates, perborates NaBO₃ × 4H₂O, NaBO₃ × 2H₂O
- Organic chemical compounds
 - pesticides (fungicides, herbicides, insecticides)
 - polychlorinated biphenyls (PCBs) and other
 - organohalides
 - polycyclic aromatic hydrocarbons (PAHs)
 - dioxins and furans

The toxicity of metal ions - Cd as an example

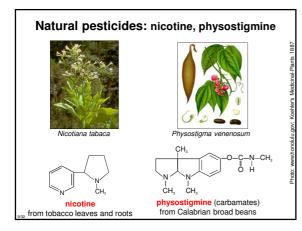
- · Interactions with signaling receptors
- Interactions and changes of channel proteins
- Interactions with kinases and phosphatases
- Glutathione (GSH) metabolism disorders
- Effects on gene expression (e.g. MT, hsp)
- Chromosomal disorders
- DNA damage
- Mitochondrial disorders
- Damage to cell membranes
- Necrosis
- · Oxidative stress
- Disturbances in metal homeostasis

Toxicity of inorganic compounds

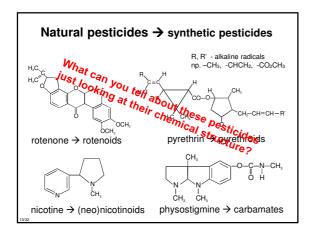
· Nitrates and nitrites

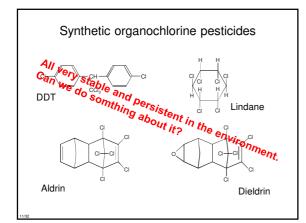

- hemoglobin oxidation to methaemoglobin
- precursors of mutagenic and carcinogenic nitro compounds
- SO₂, NO_x, O₃
 - epidermal cell damage
 - impairment of photosynthesis, transpiration, respiration
 - respiratory disorders
 - leukocytosis, erythrocyte damage
 - inhibiting the activity of certain enzymes
 - formation of free radicals (DNA damage)
- Detergents
 - dissolution of the lipid layer of cell membranes

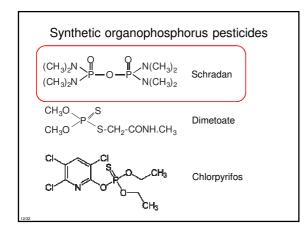
Organic pesticides

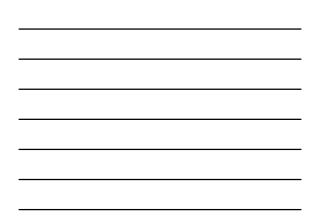

- Zoocides (approx. 10% of pesticides used)
 - insecticides (against insects)
 - molluscicides and limacids (against snails)
 - namatocides (against nematodes)
 - acaricides (against mites)
 - rodenticides (against rodents)
- Herbicides (approx. 60% of pesticides used)
- Fungicides (approx. 20% of pesticides used)
- Plant growth regulators, defoliants, deflorants, desiccants
- Bactericides

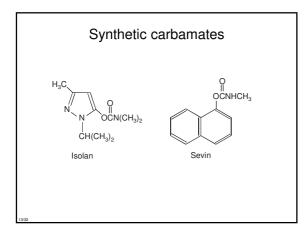
Intriguing facts from the history of pesticides

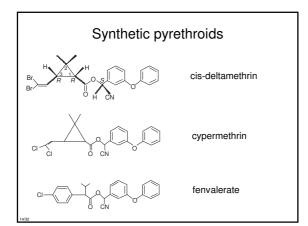

- DDT: known since 1873 (synthesis Othmar Zeidler), as a pesticide "discovered" in 1939 by Paul Hermann Müller (Nobel Prize in 1948). Application ban - 1970s (Poland -1976); re-approved by WHO in 2006.
- Schradan: Combat gas developed in 1941 by a German chemist Gerhard Schrader.

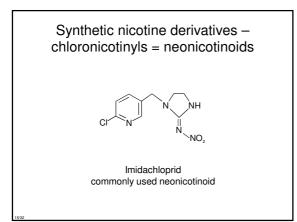


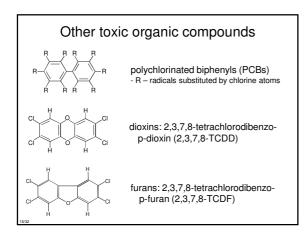


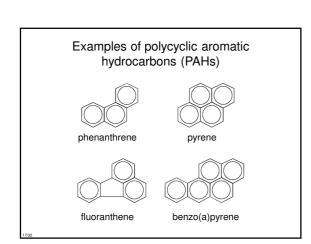


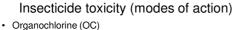


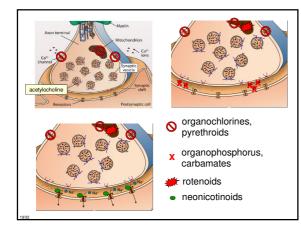




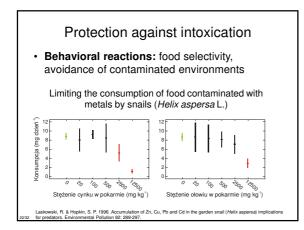




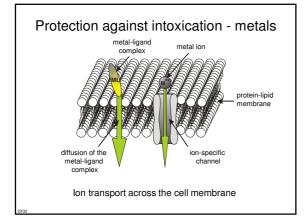




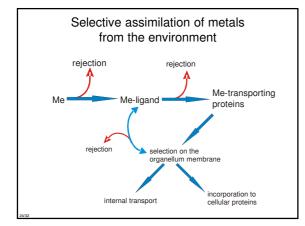
- blocking K⁺-ATPase and Ca²⁺-ATPase → damage to the active ion transport
- disorders of oxidative phosphorylation
- Organophosphorus (OP)
- blocking acetylcholinesterase (AChE) by phosphorylationCarbamates
 - blocking AChE by binding to serine at the active site of the enzyme
- · Pyrethroids
 - similar to OC: disturbed transmission of nerve signals
- Rotenoids
- blocking electron transport in mitochondria
- Chloronicotinyls (Neonics)
- nicotinic cholinergic receptors agonists



Organometallic compounds


- · Tetraethyllead
 - metabolized in the liver to triethyllead → neurological dysfunctions
- · Methylmercury
 - formed by the methylation of metallic mercury by bacteria (biomethylation) → nervous system damage
- Organic tin compounds
 - trimethyltin (TMT) and triethyltin (TET) → neurotoxins
 tributyltin (TBT) → highly toxic to invertebrates (ng/l), moderately to vertebrates

What does "toxicity" mean


- Inhibition or change in natural biochemical processes in the body →
 - disturbance of homeostasis \rightarrow
 - decreased "efficiency" of an organism, for example:
 - decreased fertility
 - shorter life time
 - increased sensitivity to pathogens
 - decline in efficiency in gaining energy or avoiding
 - predators, etc.

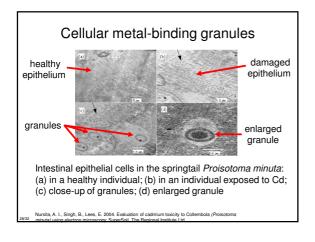
Selection of the essential ions

Diversified stability of ML complexes
 Inving Williams K stability series og i

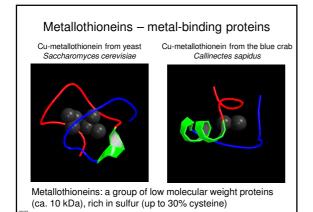
- Irving-Williams K_{ML} stability series, e.g.: (Mg²⁺ = Ca²⁺) < Mn²⁺ < Fe²⁺ <Co²⁺ < Ni²⁺ < Cu²⁺ > Zn²⁺

- Ion sizes: small ion \rightarrow high $K_{\rm ML}$

Cations 1+	Å	Cations 2+	Å
Li+	0.60	Be ²⁺	0.40
Na⁺	0.95	Mg ²⁺	0.65
K+	1.33	Ca ²⁺	1.00
Rb⁺	1.48	Sr ²⁺	1.13
Cs⁺	1.69	Ba ²⁺	1.35

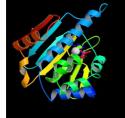


Selection of the essential ions - cont.


- · Selection by ion loading
- Selection by coordination geometry
- · Selection by spin

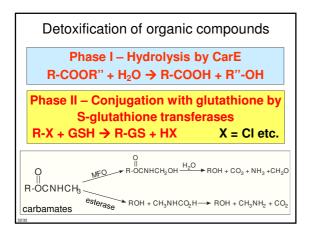
When wrong metal ion enters a cell Detoxification of metal ions

- Metals are non-degradable → no detoxification possible by degradation to non-toxic substances → other mechanisms have to be employed:
 - binding in insoluble granules :
 - type A Ca & P reserves, class "A" metals + Zn & Pb
 - type B class B metals (Cd, Cu, Hg) & transition
 - metals
 - type C mostly Fe
 - type D the only extracellular, probably not playing a role in detoxification (Ca storage)



Chaperones Heat Shock Protein 90

Hsp90 – Heat Shock Protein 90 attached to ADP-Mg



Hsp – proteins with a molecular weight of approx. 60 – 90 kDa

Primary role: protection of the tertiary structure of proteins against denaturation

Detoxification of organic compounds

- Enzymatic degradation to non-toxic or less toxic products in 2 phases :
 - Phase I detoxification: oxidation, reduction, hydrolysis or hydration → intermediate metabolites with lower K_{ow}
 - mixed-function monooxygenases (MFO)
 - · carboxylesterases (CarE)
 - Phase II: coupling of the hydroxyl groups from the above-mentioned metabolites with glutathione, glucuronic acid, glycine, sulfates, etc.
- → Excretion

