

Ecotoxicology & ERA

Toxicity measures
Biomarkers
General theory of stress
Effect of toxic chemicals on populations

Ryszard Laskowski Institute of Environmental Sciences, JU Gronostajowa 7, Kraków Room 2.1.2

https://home.cyf-kr.edu.pl//~uxlaskow

1/35

Toxicology vs. ecotoxicology

• Toxicology:

- well established methodology (observing individual organisms or cells)
- clear toxicity measures (Lethal Dose \Rightarrow LD₅₀, Lethal Concentration \Rightarrow LC₅₀, etc.)

• Ecotoxicology:

• can we use the same methods and measurs in ecotoxicology?

/35

 $\underline{\textbf{Remember}}: \verb".... higher organization levels than an individual..." - population is not an organism!$

 Individuals differ in their tolerance to environmental factors
 → the distribution of any trait in a population usually follows normal distribution (Gaussian curve)

8/35

Results of six different post hoc tests, used to compare means of ten random samples from two populations: X with the mean μ X=90 and Y with the mean μ Y=100 and equal standard deviations sX=sY=10; n=10, α =0.05, β =0.11. The same letter in a column means no significant difference at probability 95%.

Sample	Mean	Method (post hoc test)					
		Tukey	LSD	Scheffé	Bonferroni	Newman-Keuls	Duncan
X1	86.5	A	A	A	A	A	A
X2	89.4	A B	A	A	A B	A B	A B
Х3	89.5	A B	A	A	A B	A B	A B
X4	91.9	A B	A B	A	A B	A B	A B C
X5	94.5	A B	A B C	A	A B	A B	ABCD
Y1	97.7	A B	ВС	A	A B	A B	B C D
Y2	99.6	A B	ВС	A	A B	В	C D
Y3	99.6	A B	ВС	A	A B	В	C D
Y4	101.7	В	C	A	В	В	D
Y5	102.1	В	C	A	В	В	D

Examples showing the non-adequacy of NOEC i LOEC

Species	Parameter	LOEC	EC ₅₀
	(toxicant)	[mg/kg]	[mg/kg]
Cognettia sphagnetorum	Body mass increase (Cu)	100	8
Folsomia candida	Reproduction (Cu)	800	658
Folsomia candida	Reproduction (LAS)	400	91
Platynothrus peltifer	Reproduction (LAS)	1000	467
Eisenia fetida	Cocoon number (LAS)	800	558
Eisenia fetida	Cocoon number (DMT)	10	5.3
Eisenia fetida	Offspring number (DMT)	10	7.1

Energy budget is limited: metabolic rate cannot increase indefinitely

- maximal metabolic rate:
 - mammals $ca. 5-8 \times BMR$
 - birds ca. 10-15 × BMR
 - poikilothermic animals are restricted by body temperature which depends on ambient temperature

Biomarkers of toxicity

- Biomarker: "Any biological response to the presence of a toxic substance in the environment, at the individual level or below, showing a deviation from the norm"
- Types of biomarkers:
 - biochemical
 - physiological
 - histological
 - morphological
 - behavioral

25/35

Examples of biomarkers

Organization level	Biomarkers			
Biochemistry	inhibition of AChE; induction of mono-oxygenases; induction of metallothioneins; hsp induction; decrease in AEC / nucleotides			
Physiology	egg shell thinning; masculinization ("imposex"); feminization of embryos			
Tissues	pathological changes in tissues (kidneys, liver, etc.)			
Individual	Morphology: fluctuating asymmetry; b0dy growth rate			
	Behavior: consumption decline; loss of orientation; increase or decrease in locomotor activity			

Links between biomarkers and life history

AEC is significantly negatively correlated with larvae mortality of the housefly (*Musca domestica*)

Laskowski, R., Migula, P. 2004. Ekotoksykologia: od komórki do ekosystemu. PWR

Histopathological changes in the liver
of a rat exposed to elevated Cd concentration

Control rat liver (x300)

Brzóska et al. 2003. Liver and kidney functions and histology in rats exposed to cadmium and ethanol. Alcohol and Alcoholism, 38: 2-10.

Liver of Cd-exposed rat (x300); spongy cytoplasm, filled with vacuoles, more compact nuclear chromatin, necrosis of individual hepatocytes

The effect of toxicants on what trait should we then measure?

- It depends on the question:
 - if we want to detect the effects "at any cost" → most sensitive life story traits or biomarkers
 - if we need a precise impact assessment at the population level → population dynamics measures (r, λ, κ)
 - if the goal is to protect a population from extinction → probability of extinction and predicted time to extinction

9/35

Which life history traits or biomarkers are most sensitive to toxic substances?

Species	LC ₅₀ (14 days)	EC ₅₀ (cocoon production)	EC ₅₀ (NRR)
	mg Zn kg ⁻¹		
Eisenia fetida	3172	1898	>2000
Lumbricus terrestris	2378	1029	542
Lumbricus rubellus	1734	599	168
Aporrectodea caliginosa	1695	442	252

Spurgeon et al. 2000. Relative sensitivity of life-cycle and biomarker responses in four earthworm species exposed to zinc. Environmental Toxicology and Chemistry, 19: 1800-1808.

Kepone (chlordecone) effects on individual life history traits of <code>Eurytemora affinis</code> at increasing concentration in water, each row describes a change of a trait when increasing the concentration from the previous lower concentration, i.e., when increasing the concentration from 0 to 5 $\mu g \, dm^3$, from 5 do 10 $\mu g \, dm^3$, etc. LC50 values for a 48 h test, population parameters -21 days (Allan & Daniels, 1982).

Conc.		Effect on r				
increase (µg dm ⁻³)	% LC ₅₀	Survival	Reproductive age	Litter size	Number of litters	
$0 \rightarrow 5$	12.5	none	none	none	none	
5 → 10	25	none	small delay	substantial reduction	none	
10 → 15	37.5	reduction	delay	none	substantia reduction	
15 → 20	50	small reduction	delay	substantial reduction	substantia reduction	
20 → 25	62.5	reduction	none	none	substantia reduction	

When we need to estimate effects of a toxicant on a population, it's better to use population dynamics measures

$$R_0 = \sum_{x=0}^n l_x m_x \qquad 1 = \sum_{x=0}^n e^{-rx} l_x m_x$$

$$1 = \sum e^{-rx} l_x m_x$$

$$r_i = \frac{\ln \frac{N_t}{N_0}}{\Delta t}$$

 λ - the dominant eigenvalue of the Leslie matrix

K- environmental capacity

Take-home messages

- LD₅₀ Lethal Dose for 50% individuals
- LC_{so} Lethal Concentration for 50% individuals
- EC_{so} 50% Effect Concentration (e.g., 50% decrease in fecundity or life span, etc.)
- NOEC No Observed Effect Concentration = the highest concentration that does not cause significant negative effects
- LOEC Lowest Observed Effect Concentration = the lowest concentration at which significant negative effects appear
- Statistical method of choice does matter!
- The General Theory of Stress tells that detoxification and decontamination may be energetically costly → effects!
- Biomarkers can help in early detection of intoxication
- Useful measures of population-level effect of toxicants: r, λ , K

5/35