Ecotoxicology & ERA

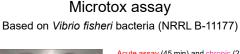
Ecotoxicological assays (tests) Genotypic plasticity Community ecotoxicology

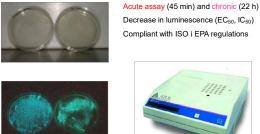
Ryszard Laskowski Institute of Environmental Sciences, JU Gronostajowa 7, Kraków Room 2.1.2

https://home.cyf-kr.edu.pl//~uxlaskow

Ecotoxicological assays (tests)

• Assume that the test species represents reactions of a broad range of organisms


- · Usefulness criteria:
 - 1. results must be interpretable in terms of ecological risks 2. must allow extrapolation to other species, communities
 - and whole ecosystems
 - 3. test species must be sensitive to toxicants
 - 4. must offer good precision
 - 5. must be simple and possible to standardize
 - 6. must be repeatable


Types of ecotoxicological assays

- Acute: exposure time short enough for control organisms not to show negative reactions if not fed during the test; <u>endpoints:</u> mortality
- Sub-chronic: longer than acute, but not above 1/3 of the pre-reproductive time; organisms fed during the test; <u>endpoints:</u> survival, other (e.g., enzyme activity, AEC, respiration, etc.)
- Chronic: longer than sub-chronic (frequently required that the test covers at least whole pre-reproductive period and part of the reproductive period; better – whole individual lifespan); organisms fed during the test; endpoints: survival and reproduction, other (as above)

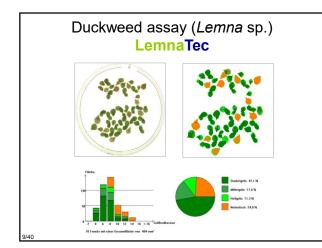
Mirobial tests: advantages and examples

- Advantages: functionally meaningful, many microorganisma are easy to culture, fast response
- Examples :
 - growth rate (biomass or cell numbers)
 - enzymatic activity (e.g., nitrate reductase, ATPase, dehydrogenase)
 - ATP concentration (unsatisfactory sensitivity!)
 - luminescence Microtox assay: Vibrio fisheri (Photobacterium phosphoreum)
 - respiration and microcalorimetry

Assays on plants

- Algae: standard US EPA AAP Algal Assay Procedure Bottle test → acute (days)
 Selenastrum, Chlorella, Anabaena, Microcystis
- Duckweed (Lemna sp.) → acute (4-7 days), chronic also possible
- Terrestrial plants \rightarrow sub-chronic assays (>10 days)
 - seed germination (grass *Lolium* sp., cereals, lettuce, Chinese cabbage, turnips and others)
 - root growth (various species, as above)
 - life cycle (Arabidopsis sp., Brassica sp.)
 - photosynthesis (and respiration)

ALGALTOXKIT F Based on the algae Selenastrum capricornutum


Sea water ALGALTOXKIT F Based on diatoms Phaeodactylum tricornutum

Commercial kits containing Phaeodactylum tricornutum 72 h assay:

- determining population growth rate by measuring the optical density (EC_{50})

- compliant with ISO regulations

PHYTOTOXKIT

Based on Sorghum saccharatum, watercress (Lepidium sativum) and mustard (Sinapis alba)

Commercial kits containing seeds of the abovementioned plants

3-day test:

- determination of germination efficiency and growth rate of the root and shoot (EC50)
- · compliant with ISO recommendations

Assays using aquatic animals

- brine shrimp (Artemia salina) and several species of rotifera - standard commercial assays (ToxKit) \rightarrow acute test
- · Daphnia sp. - acute test (OECD - 24 h; EPA - 48 h) - chronic test - reproduction (21 days)
- mussels and snails \rightarrow acute and chronic tests
- fish \rightarrow acute tests (4 7 d.) and chronic
- (30 >250 d., depending on the species)

ARTOXKIT M

Based on the brine shrimp Artemia salina

Commercial kits containing eggs (cysts) of Artemia salina 24 h assay:

- mortality (LC₅₀)
- in many countries used as the standard test for salt water pollution research

2/40

1/40

CERIODAPHTOXKIT F Based on the shellfish Ceriodaphnia dubia

Commercial kits containing eggs (cysts) of Ceriodaphnia dubia 24-godzinny test:

- mortality (LC₅₀)
- compliant with US-EPA regulations

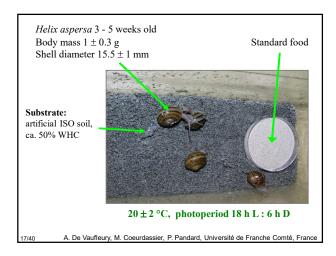
Based on the shellfish Daphnia magna i D. pulex

Commercial kits containing eggs (cysts) of Daphnia magna or Daphnia pulex

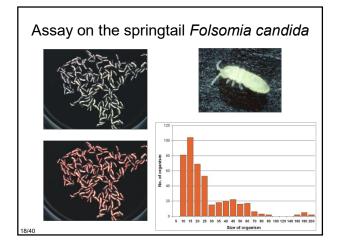
DAPHTOXKIT F

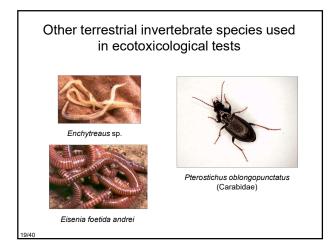
48 h assay:

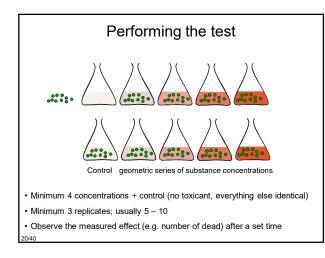
4/40

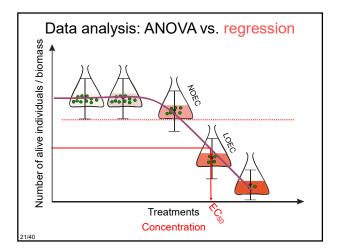

- effects on immobilization (EC_{\rm 50}) and mortality (LC_{\rm 50}) - compliant with OECD i ISO regulations

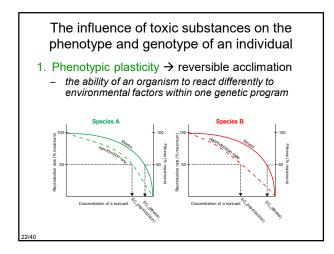
Assays using terrestrial animals


- Invertebrates \rightarrow acute and chronic assays:
 - soil and epigeic animals: earthworms (Eisenia foetida), snails (Helix aspersa), mites, springtails (Folsomia candida)
 - predatory invertebrates (beneficial): carabids, ladybugs, spiders, bugs, spiders
 - parasitoids (beneficial): wasps, e.g. Aphidiidae, Ichneumonidae and others
 - other beneficials: honey bee (Apis mellifera)
- birds: quail, mallard duck
- · rodents: mouse, rat

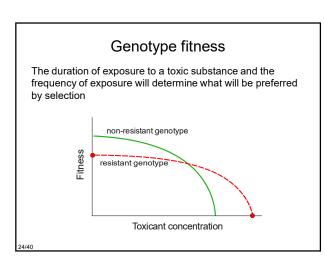




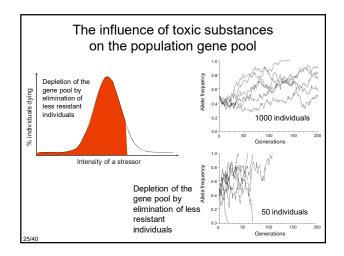




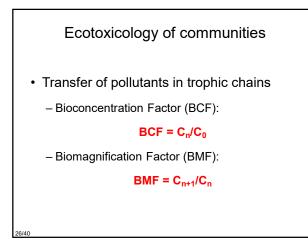
The influence of toxic substances on the phenotype and genotype of an individual

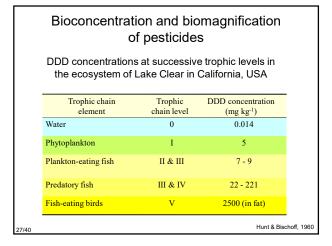

2. Development conversion

- launching an alternative genetic program during individual development
- 1 + 2 = genotypic plasticity

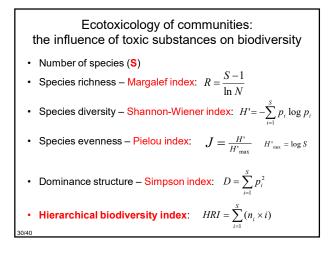

3. Adaptation

3/40

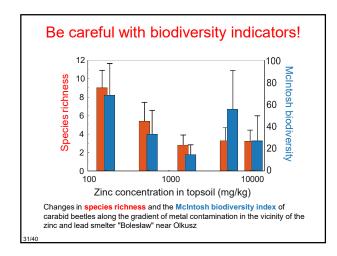

- directional selection (elimination of more sensitive individuals)
- hard selection



	Bioconcentration and biomagnification of metals					
	Cadmium (Cd) concentrations in successive trophic levels in the area contaminated with cadmium					
	Tropic level	Cd concentrations (mg kg ⁻¹)				
	Producers (plants)	6 - 25				
	Herbivores (isopods, snails)	29 - 171				
	Predators (thrush kidneys, <i>Turdus philomelos</i>)	387				
28/40	Martin & Coughtrey, 197					



Biomagnification – a general phenomenon?							
Concentrations and biomagnification factors (BMF) of lead, zinc and cadmium for herbivores and predators of the contaminated terrestrial ecosystem							
М	letal	Herbivores (mg kg ⁻¹)	Predators (mg kg ⁻¹)	BMF			
Pt)	122 - 685	66 - 551	0.54 - 0.80			
Zı	1	260 - 2395	382 - 1299	1.50 - 0.54			
C	d	2-25	29 - 377	14.50 - 15.1			
	-						


9/40

Martin & Coughtrey, 1976

