Ecotoxicology \& ERA

Stochastic processes in populations and effects of toxicants

Ryszard Laskowski
Institute of Environmental Sciences, JU
Gronostajowa 7, Kraków
Room 2.1.2
https://home.cyf-kr.edu.pl//~uxlaskow

Problems for the discussion

- What does it mean "ecological risk"?
- What do standard ecotoxicological assays tell about ecological risk?
- The meaning of stochastic demographic processes
- natural population processes are per se dangerous
- Life in nature - nature is changeable and dynamic!
- Can random phenomena be included in the
ecological risk assessment?

Ecological risk: What does it mean?

- Ecological risk can only be defined in terms of ecology, not toxicology!
- Ecology is the study of populations, communities, and ecosystems.
\rightarrow Ecological risk can therefore be defined as:
- for populations: probability of extinction (or time to extinction)
- for communities: decline in species richness, changes in diversity, etc.
- for ecosystems: changes in functioning (e.g. decrease in productivity, decrease in decomposition rate).

The probability of a population extinction in a random environment depends on its internal \qquad growth rate

\qquad
\qquad
\qquad
\qquad
\qquad
Initial population size equal to the carrying capacity of the habitat K
(after Bürger \& Lynch 1997) \qquad

The probability of a population extinction in a random environment depends on the \qquad carrying capacity of the habitat

\qquad
\qquad
\qquad
\qquad

Carrying capacity (K) \qquad

Initial population size equal to the carrying capacity of the habitat K
(after Bürger \& Lynch 1997) \qquad

The probability of population extinction in a random environment depends on the rate of \qquad changes in the environment

\qquad
\qquad
\qquad
\qquad
\qquad
Initial population size equal to the carrying capacity of the habitat K
(after Bürger \& Lynch 1997) \qquad

Stochastic processes

- Demographic

- random fluctuations in the number of survivors and newborns (p_{x} and f_{x} remain unchanged)
- important in populations smaller than about 100 individuals
- Environmental
- random fluctuations in fertility and survival due to variability of environmental conditions (variable p_{x} and f_{x} values)
- impact on population dynamics independent of population size
- Genetic
- random fluctuations in fertility and survival due to genetic heterogeneity of the population (variable p_{x} and f_{x} values)
- impact on population dynamics independent of population size

Where does the demographic stochasticity come from?

- The population size is finite \rightarrow very rarely are the long-term fertility averages and survival probabilities actually realized:
- If $f_{i}=2.15$ and $\mathrm{N}=50$, then the actual number of newborns could be 107 or 108 but NEVER 107.5
- If $p_{i}=0.13$ and $\mathrm{N}=50$, then the actual number of survivors may be 6 or 7 , but NEVER 6.5
\rightarrow The smaller the population, the more important random demographic phenomena

How to study stochastic processes?

- Monte Carlo simulations

- invented in the 1930s, later used, e.g. in the Manhattan Project
- among the creators: Stanisław Ulam
- a class of calculation algorithm methods based on the use of random

\qquad
\qquad
\qquad
\qquad or pseudo-random numbers
\qquad
\qquad

Studying stochastic processes in populations

-What kind of stochasticity is to be simulated?
-demographic: number of newborns from the Poisson distribution; number of survivors of the binomial distribution
-environmental: f_{x} from log-normal distribution; p_{x} from the beta distribution.

- genetic stochasticity is indistinguishable from environmental

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The interaction between toxicity and demographic stochasticity

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Conclusions

- The importance of demographic stochasticity depends on the \qquad population size;
\qquad
- Toxicants affect the population size:
\rightarrow the effects of toxic substances under field conditions are not independent, but depend on the interaction between the direct toxic effects and stochastic phenomena.
\qquad
- Interaction is probably most important at moderate contamination levels and in low to medium size populations (high contamination will outweigh random effects, and in large populations demographic randomness is of little importance).
\qquad
\qquad
\qquad

Living in a natural environment: The environment is changeable and unpredictable \qquad

[^0]

The influence of temperature on the fertility of grasshoppers

Species	Temeperature (${ }^{\circ}$ C)	Cocoons per female	Eggs per cocoon	Total reproductive output
Chorthippus brunneus	25	1.6	8.3	13.28
	30	8.2	9.7	79.54
	35	22.6	10.1	228.26
Stenobothrus lienatus	30	0.5	-	0
	35	2.2	3.2	7.04

. J. Willot i M. Hassall. 1998. Life-history responses of British grasshoppers
(Othoptera: Acrididae) to temperature change. Functional Ecology, 12: 231-241.

Let's add demographic and environmental stochasticity

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Closer to reality:
demographic + environmental stochasticity
\qquad

Ecological risk assessment in a changing world

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Conclusions

\qquad

- Stochastic processes can significantly change the \qquad ecological risk caused by contamination;
- Although in non-polluted environments, demographic \qquad stochasticity is important only in small populations, toxicants decrease the population size and, consequently, increase the importance of demographic stochasticity; \qquad
- Environmental stochasticity can also be important in large populations (e.g., at $\mathrm{N}_{0}=1000, \mathrm{p}_{\text {ext }}$ increased from ca. 0.2 \qquad at $\mathrm{RSD}=0$ to 0.7 at $\mathrm{RSD}=50 \%$)

Conclusions for risk assessment

- The following data are necessary for a meaningful assessment of the extinction risk:
- the life history of the organism;
- population size;
- variability of environmental conditions.
- However, facts contradict the high risk of extinction at moderate contamination levels: \qquad risk assessment models should take into account the density dependence. \qquad
\qquad

Application of MS-Excel spreadsheet and PopTools add-in for Monte Carlo analysis
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Simulation result

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Influence of pesticide and demographic and environmental stochasticity on aphid population

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: Latitude $50^{\circ}-70^{\circ} \mathrm{N}$, longitude $-60^{\circ}-60^{\circ}$
 (Global Historical Climatology Network)

