Ecotoxicology & ERA

Planning an experiment Partial life tables Mixture toxicity and interactions Experimental design QSAR

Ryszard Laskowski

Institute of Environmental Sciences, JU Gronostajowa 7, Kraków Room 2.1.2

https://home.cyf-kr.edu.pl//~uxlaskow

Problems for discussion

- How to estimate the risk to a population of long-lived iteroparic organisms?
 - We are unable to study the effects of a toxic substance throughout the life of the organism
- How do toxic substances work when mixed with other substances?
 - Are the effects of the toxic substances simply additive or are there other effects?
- Do environmental conditions affect the toxicity of pollutants?
 - Do pH, temperature, humidity, etc. modify the effects of toxic substances on organisms?

How to check which elements of the life history of a species are crucial for its sensitivity to adverse environmental factors?

 λ sensitivity to perturbations in matrix elements

$$S_{ij} = \frac{\partial \lambda}{\partial a_{ij}}$$

 $\boldsymbol{\lambda}$ elasticity to perturbations of matrix elements

 $e_{ij} = \frac{a_{ij}}{\lambda} \frac{\partial \lambda}{\partial a_{ij}}$

1

Toxicity of mixtures of toxic chemicals and interactions with environmental factors

- Toxic substances rarely occur singly:
 - pollution from smelters → e.g. $Zn + Cd + Pb + SO_2 + NO_x + ...$ ■ pollution from chemical industry → PCB + WWA + SO₂ + NO_x + ...
- Different groups of toxic chemicals act on different biochemical and physiological mechanisms:
 - e.g. pesticides vs. metals
- Some toxic chemicals can react with each other, resulting in products that are either more or less toxic than the substrates
- Environmental conditions can influence toxicity

Experimental plans to study the effects of several toxic substances simultaneously

- Complete plan n^(k): the ability to evaluate all k main effects and the effects of all interactions, but very laborious :
 - = e.g.: 3 concentrations for 4 toxicants \rightarrow 3⁴ = 81 treatments x 3 replicated = 243 units
 - for 5 toxicants \rightarrow 729 units
 - for 6 toxicants \rightarrow 2187 units

 Partial (fractional) plans n^(k-p): no possibility of assessing the effects of higher-order interactions, but assessing the main effects and effects of lower-order interactions possible with much less work

Often used in industry for economic reasons

Experimental plans useful in ecotoxicology

• A complete multi-level plan (full factorial)

- all combinations of all concentrations are tested: n^(k)
 by far the best, but the most labor-intensive: min. 3
- concentrations → for 3 toxicants N=3³ = 27 (with no replicates!)
 Partial (fractional) plans
 - only some combinations are tested: n^(k-p)
 - Box-Behnken design: 3^(k-p) → for 3 toxicants N=15
 central composite designs: no assumptions about the number of concentrations → any set of continuous values of input data can be analyzed (n)

Fractional plan 3 ^(k-p) – Box-Behnken design												
					run	Factor_A	Factor_B	Factor_C				
Design for 3 substances,						0.0	0.0	0.5				
each at 3 concentrations						1.0	0.0	0.5				
						0.0	1.0	0.5				
Factors	Low	High	Continuous		4	1.0	1.0	0.5				
Factor_A	0	1.0	Yes		5	0.0	0.5	0.0				
Factor_B	0	1.0	Yes		6	1.0	0.5	0.0				
Factor_C	0	1.0	Yes		7	0.0	0.5	1.0				
				1	8	1.0	0.5	1.0				
					9	0.5	0.0	0.0				
					10	0.5	1.0	0.0				
					11	0.5	0.0	1.0				
					12	0.5	1.0	1.0				
					13	0.5	0.5	0.5				
					14	0.5	0.5	0.5				
					15	0.5	0.5	0.5				
				-				20				

In co Corre	In fractional designs, it is necessary to check the correlation matrix between the effects studied Correlation matrix between effects for Box-Behnken design											
	Α	В	С	AA	AB	AC	BB	BC	CC			
Α												
В	0.0000											
С	0.0000	0.0000										
AA	0.0000	0.0000	0.0000									
AB	0.0000	0.0000	0.0000	0.0000								
AC	0.0000	0.0000	0.0000	0.0000	0.0000							
BB	0.0000	0.0000	0.0000	-0.0714	0.0000	0.0000						
BC	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					
CC	0.0000	0.0000	0.0000	-0.0714	0.0000	0.0000	-0.0714	0.0000				
→ n	\rightarrow no correlations >0.5. \rightarrow interpretation of results should be easy											

Is it possible to do without experiments in ecotoxicology?

Short answer: NO

Г

- More complex answer: to some extent YES
 - the effects of individual toxicants can be roughly predicted from their chemical structure
 - \rightarrow QSAR Quantitative Structure-Activity Relationships
 - the effects of mixtures can be estimated using appropriate interaction model: additive, antagonistic or synergistic

QSAR – Quantitative Structure-Activity Relationships

- Used in the medical industry to develop new drugs
- Relies on combining a limited number of empirical data and chemical knowledge to assess the toxicity of analogues of substances with known toxicity
- One of the easiest ways is to predict toxicity based on the hydrophobicity of a substance
 - the hydrophobicity of the substance affects:
 - availability for organisms (bioavailability) and the tendency for accumulation
 - metabolism
 - toxicity

Summary

- Long-lived animals $\rightarrow \lambda$ elasticity analysis \rightarrow focus on the life story elements with the greatest impact on λ
- In nature, toxic substances are rarely found individually → many chemicals affect organisms at the same time
- Toxic substances may interact → antagonism or synergism possible
- Studying multi-factor effects can be very costly → complete vs. fractional experimental designs
- Toxicity can sometimes be predicted with a satisfactory accuracy by means of modelling-based methods → K_{ow}, QSAR, mixture toxicity models